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Abstract The coefficient of variation has been found to be very useful unit less measure of relative 

consistency of sample data in many areas such as chemical experiments, finance, insurance risk 

assessment, medical studies, etc., a chi-square test is used for testing the equality of several 

coefficients of variation in the literature. This chi-square test demonstrates only the statistical 

significance of coefficients of variation. In this paper, a bootstrap graphical method is developed as an 

alternative to the chi-square test to test the hypothesis on equality of several coefficients of variation. 

An example is given to demonstrate the advantage of bootstrap graphical procedure over the chi-

square test from decision making point of view. 

Keywords Coefficient of Variation, Chi-Square Test, Bootstrap Method 

 

1. Introduction 

 

Coefficient of variation is used in such problems where we want to compare the variability of two or 

more than two groups. The series for which the coefficient of variation is greater is said to be more 

variable or conversely less consistent, less uniform, less stable or less homogeneous. On the other 

hand, the series for which coefficient of variation is less is said to be less variable or more consistent, 

more uniform, more stable or more homogeneous. The coefficient of variation is independent of unit 

of measurement and has been found to be a very useful measuring of relative consistency of sample 

data in many situations. For example, the coefficient of variation is useful in measure risk assessment 

as a measure of the heterogeneity of insurance portfolios. Coefficient of variation is also used in 

comparing the characteristics such as tensile strengths, weights of materials, etc. in the processing 

type of industries.  

 

Statistical inference based on data resampling has drawn a great deal of attention in recent years. 

The main goal is to understand a collection of ideas concerning the non-parametric estimation of bias, 

variance and more general measures of errors. The main idea about these resampling methods is not 

to assume much about the underlying population distribution and instead tries to get the information 

about the population from the data itself various types of resampling leads to various types of 
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methods like the jackknife and the bootstrap. Bootstrap method (Efron, 1979) use the relationship 

between the sample and resamples drawn from the sample, to approximate the relationship between 

the population and samples drawn from it. With the bootstrap method, the basic sample is treated as 

the population and a Monte Carlo style procedure is conducted on it. This is done by randomly 

drawing a large number of resamples of size n from this original sample with replacement. 

 

Both bootstrap and traditional parametric inference seek to achieve the same goal using limited 

information to estimate the sampling distribution of the chosen estimator ̂ . The estimate will be used 

to make inferences about a population parameter . The key difference between these inferential 

approaches is how they obtain this sampling distribution whereas traditional parametric inference 

utilizes a priori assumptions about the shape of distribution of ̂  . The non-parametric bootstrap is 

distribution free which means that it is not dependent on a particular class of distributions. With the 

bootstrap method, the entire sampling distribution of ̂  is estimated by relying on the fact that the 

sampling distribution is a good estimate of the population distribution. In section 3, bootstrap method 

applied to testing of equality of several coefficients of variation is explained [1, 2].  

 

2. Testing of Equality of Several Coefficients of Variation 

 

Let  njkiX ij ,,2,1,,,2,1,    represent k independent random samples of size n and we 

assume that  2,~ iiij NX   for ki ,...,2,1 . Since the k samples are drawn from k normal 

populations with different means and different variances, the coefficient of variation 



   is a useful 

characteristic to measure the relative variability in the k normal populations. Here, we are interested in 

testing the null hypothesis.   kH ...: 210  (Unknown), where 

i

i

i



   against the 

alternative hypothesis that at least two coefficients of variation are unequal. 

 

Chi-square test is used for testing 0H  in the literature [3, 4]. This test demonstrates only the statistical 

significance of the coefficients of variation being compared. Chi-square test for testing 0H , Miller and 

Feltz (1997) suggested a test statistic and it is given by 
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3. Bootstrap Graphical Method for Testing of Equality of Several Coefficients of Variation 

 

Let  njkiX ij  ,2,1;,2,1,  represent k available independent random samples of size n and 

the coefficient of variation of the i
th
 sample is given by 

i

i

i
x

s
c  for i=1, 2...k. Bootstrap graphical 

procedure for testing the equality of several coefficients of variation is given in the following steps.  

 

1. Let ijbY be the b-th bootstrap sample of size n, drawn from i
th
 available sample, where b=1, 

2…B (=3000), i=1, 2…k and j=1, 2…n. 

2. Compute iby and ibs , the mean and standard deviation of b-th bootstrap sample form i
th
 

available sample and are given by 
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3. Compute ibc , be the coefficient of variation of b-th bootstrap sample from i
th
 available sample 

and is given by

ib
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5. Obtain the sampling distribution of coefficient of variation using B-bootstrap estimates and 

compute the central decision line (CDL) as 



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. The lower decision line (LDL) and the upper decision line 

(UDL) for the comparison of each of the ic  are given by 
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Where z  is the  -th upper cut off point of standard normal distribution. 

6. Plot ic  against the decision lines. If any one of the points plotted lies outside the respective 

decision lines, 0H  is rejected at 5% level and conclude that the coefficients of variation are 

not homogenous. 

 

The proposed method is very useful in handling of small samples of size less than 30. This method 

not only tests the significant difference among the coefficients of variation but also identify the source 

of heterogeneity of coefficients of variation. 

 

Size of the proposed test is obtained using simulation of random samples from normal populations 

having with the equal coefficient of variations.  

Let the populations, 

          1 2 3 4 5~ 2,1 ,  ~ 4,4 ,  ~ 6,9 ,  ~ 8,16  ~ 10,25X N X N X N X N and X N having with the 

same coefficients of variation. The proposed test procedure is performed 100 times to compare the k 

populations with respect to coefficients of variation using the different samples (equal in size) drawn 
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from the above five populations. The size of the test is defined as number of times the test procedure 

rejecting the null hypothesis of equality of coefficients of variations in 100 iterations.  

That is, 

Number of times the null hypothesis is rejected

100
  . The following table presents the size of the 

test for comparing k-population coefficients of variation based on the samples of size n= 5, 10, 15, 20, 

25 and 30.  

 

Table 1: Size of the Proposed Test 

 

k\n 5 10 15 20 25 30 

3 0.15 0.14 0.14 0.12 0.10 0.10 

4 0.19 0.18 0.15 0.14 0.12 0.11 

5 0.22 0.22 0.20 0.17 0.15 0.12 

 

Power of the test procedure is computed using simulating random samples from normal populations. 

Let the populations, 

   1 2~ 2,2 ,  ~ 4,2 ,X N X N       3 4 5 ~ 6,9 ,  ~ 4,4  ~ 5,5X N X N and X N , the populations 

are considered in such a way that these are having with the different coefficients of variation across 

the populations. The test procedure is performed 100 times by considering the different samples from 

the k-populations. Let   be the ype-II error and which is computed as 

0Number of times accepting H

100
  . Power of the test is given by 1  and is computed for 

comparison of k-populations based on the samples of size n=5, 10, 15, 20, 25 and 30. The following 

table presents the power of the proposed test.  

 

Table 2: Power of the Test 

 

k\n 5 10 15 20 25 30 

3 0.85 0.85 0.87 0.89 0.91 0.93 

4 0.82 0.84 0.87 0.86 0.89 0.91 

5 0.80 0.85 0.88 0.89 0.94 0.93 

 

In the above tables k represents the number of populations compared and n is the size of the each 

sample drawn from the k-populations in testing of equality of coefficients of variation. From the above 

two tables, it is observed that the size of the test is decreasing and the power of the test is increasing 

as the sample size increases. The proposed test procedure is explained with a numerical example in 

the following section. 

 

4. Numerical Example 

 

Example 5.2 from the paper of Tsou (2009) is considered and this example describes the numbers of 

birth in 1978 on Monday, Thursday, and Saturday in the United Kingdom. We use the new procedure 

to test whether the coefficients of variation of the three different dates are the same [5]. Let c1 

represents the coefficient of variation of numbers of birth on Monday, c2 represents the coefficient of 

variation of numbers of birth on Thursday and c3 represents the coefficient of variation of numbers of 

birth on Saturday. For the given data c1=0.0649, c2=0.0580, c3=0.0465, k=3 and n=52. We obtain 

2 test statistic value is 5.5079 and the significant value at 5% level is 9915.52

05.0,2  .  
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Since the test statistic value is less than the critical value, therefore we accept H0 at 5% level. 

 

By applying the bootstrap procedure explained in Section 3, the LDL, CDL and UDL are obtained as 

0.0440, 0.0550 and 0.0675 respectively. Prepare a chart as in Figure 1, with the above decision lines 

and plot the points  3,2,1ici . From the Figure 1, we observe that all the points within the decision 

lines, hence H0 is accepted and we may conclude that the coefficients of variation of the three 

different dates are the same. 

 

5. Conclusion 

 

Note that Ho is accepted by both Chi-Square test and the bootstrap graphical method. When Ho is 

rejected, chi-square test reveals the statistically significant differences among the coefficients of 

variation being compared, while the graphical method not only reveals the statistically significant 

differences but also identify the source of heterogeneity of coefficients of variation. 

 

Figure 

 

 
 

Figure 1: Decision Lines for the Coefficients of Variation 
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Abstract Finitesimale deformation in a rotating disc having variable density parameter has been 

studied by using Seth’s transition theory. With the effect of density variation parameter, rotating disc 

requires lesser angular speed for compressible as well as incompressible materials. Circumferential 

stresses are maximum at the internal surface for incompressible materials as compared to 

compressible material. Rotating disc is likely to fracture by cleavage close to the bore. 

Keywords Disc, Stresses, Deformation, Yielding, Angular Speed, Density 

 

1. Introduction 

 

Disc plays an important role in machine design. Stress analysis of rotating discs has an important role 

in engineering design. Rotating discs are the most critical part of rotors, turbines motor, compressors, 

high speed gears, flywheel, sink fits, turbo jet engines and computer’s disc drive etc. Solutions for thin 

isotropic discs can be found in most of the standard elasticity and plasticity textbooks [1, 2, 3, 4, 5]. 

Chakrabarty [4] and Heyman [6] solved the problem for the plastic state by utilizing the solution in the 

elastic state and consider the plastic range with the help of Tresca’s yield condition. Further, to obtain 

the elastic-plastic stresses, these authors matched the elastic and plastic stresses at the same radius 

r = c of the disc. Perfectly elasticity and ideal plasticity are two extreme properties of the material and 

the use of ad-hoc rule like yield condition amounts to divide the two extreme properties by a sharp 

line, which is not physically possible. Seth’s  transition theory [7] does not required any assumptions 

like an yield criterion, incompressibility condition, associated flow rule and thus poses and solves a 

more general problem from which cases pertaining to the above assumptions can be worked out. This 

theory [7] utilizes the concept of generalized strain measure and asymptotic solution at critical points 

or turning points of the differential equations defining the deformed field and has been successfully 

applied to a large number of problems [7-29]. Seth [8] has defined the generalized principal strain 

measures as: 
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 , (i =1, 2, 3)                                                             (1)  

Where n is the measure and ii

A

e  is the Almansi finite strain components. For n = -2, -1, 0, 1, 2 it gives 

Cauchy, Green Hencky, Swainger and Almansi measures respectively. In this research paper, we 

investigate the problem of finitesimale deformation in a rotating disc having variable density 

parameter by using Seth’s transition theory. The density of disc is assumed to vary along the radius in 

the form: 

 0 /
m

r b 


                                                                                                                               (2)  

Where 0  is the constant density at r = b and m is the density variation parameter. Results have 

been discussed and presented graphically. 

 

2. Mathematical Model 

 

We consider a thin annular disc of variable density with central bore of inner radius a and outer radius 

b is considered (Figure 1). 

 

 
 

Figure 1: Geometry of Rotating Disc. 

 

The disc is rotating with angular speed   of gradually increasing magnitude about an axis 

perpendicular to its plane and passing through the center. The thickness of disc is assumed small so 

that the disc is effectively in a state of plane stress, that is, the axial stress zzT  is zero. 

 

2.1 Formulation of the Problem 

 

Displacement components in cylindrical polar co-ordinate  , ,r z
 
are given by [8] as:  
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(1 )u r   , v = 0, w = dz                                                                                                       (3) 

Where   is position function, depending on r = 22 yx   only and d is a constant. 

 

The finite strain components are given by [8] as: 

 

 
21

1 ;
2
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21
1 ;
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21

1 (1 )
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A

zze d     ; 
A

re  = 
A

ze =  
A

zre  = 0           (4)

 

Where /d dr   and meaning of superscripts “A” is Almansi.  

 

By substituting eq. (4) in eq. (1), the generalized components of strain become: 

 

 
1

1
n

rre r
n

    
 

;
1

1 ne
n

     ;
1

1 (1 )n

zze d
n
     ; 0r z zre e e                  (5) 

 

The stress–strain relations for isotropic material are given [5]: 

 

ijT  = 1 2i j ijI e  , (i, j = 1, 2, 3)                                                                                            (6) 

Where ijT  are stress components,   and   are Lame’s constants, 1 kkI e  is the first strain 

invariant, ij  is the Kronecker’s delta. 

 

Equation (6) for this problem becomes 

 

 
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2
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(7) 

 

By substituting eq. (5) in eq. (7), the stresses are obtained as: 
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3 2 1 2 1
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rrT C C C P
n
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
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  
 

and 0r z zr zzT T T T                                                                                                        (8) 

where C is the compressibility factor of the material in term of Lame’s constant, given by 

2 / 2 .C      

The equations of motion are all satisfied except: 

 

  2 2 0rr

d
rT T r

dr
   

 

                                                                                                   (9) 

Where   is the density of the material of the rotating disc. 

By using eqs. (8) in eq. (9), we get a non- linear differential equation for 
 
as: 

 

         
2 2

112 1 1 1 1 2 1
2

n n nn ndP n r
C n P P P nP C C P

d


 

 

  
             

 
(10)  
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Where C is the compressibility factor of the material in term of Lame’s constant, given by 

2 / 2C      and P is dependence function of   and   is dependence function of r only.  

From eq. (10), the turning points of   are 1P  and  . 

 

A. Boundary Conditions The boundary condition of the rotating disc is: 

 

(i) 0rrT , r = a  

(ii) 0rrT   r = b                                                                                                                   (11) 

Where rrT  denote stress along the radial direction. 

 

B. Solution of Problem It has been shown that the asymptotic solution through the principal stress 

leads from elastic state to the plastic state (see Seth [7, 8], Gupta and Thakur [9-11] and Thakur 

Pankaj [12 - 29] at the transition point P . The transition function R  is defined as: 

 

  3 2 2 1 1
2

nnnT
R C C C P 


        
 

                                                               (12) 

 

Taking the logarithmic differentiating of eq. (12) with respect to r, we get: 
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                                                            (13) 

 

By substituting the value of /dP d  from eq. (10) into eq. (13) and by taking asymptotic value   

P , one gets after integration:  

1R Ar                                                                                                                                     (14) 

Where A  is a constant of integration, which can be determined by boundary condition and by, 

1 2C C     is the Poisson’s ratio. 

From eq. (12) and (14), it follows: 
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                                                                                                                      (15) 

By substituting eq. (15) into eq. (9) and using eq. (2), then integrating, we get: 
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Where B  is a constant of integration, which can be determined by boundary condition. 

 

By applying boundary condition from eq. (11) in eq. (16), we get:
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By substituting the value of A and B  into eqs. (15) and (16), we get: 
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                                                                 (17) 
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
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                                                                                                  (18) 

 

equations (17) and (18) gives elastic-plastic transitional stresses in a thin rotating disc of variable 

thickness with edge loading. 

 

C. Initial Yielding of Rotating Disc It is seen from equ. (18) that T  is maximum at the internal 

surface (r = a). Therefore yielding will take place at the inner surface and equ. (18) become: 
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and angular speed i necessary for initial yielding is given by: 
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                                                                                     (19) 

Where  
1

2
0

1
/i i Y

b
   . We introduce the following non-dimensional components as: R = r/b, 

2 2 2

0 0/ , , / , /r rrR a b b Y T Y T Y         . Eqs. (17), (18) and (19) become: 
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D. Fully Plastic State of Rotating Disc The angular speed f i 
 
for which the rotating disc 

become fully plastic  1/ 2 0.5    at the external surface r = b, equation (18) becomes  
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and angular speed f necessary for initial yielding is given by: 
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                                                                             (23) 

 

and stresses and angular speed give by eqs. (20), (21) and (23) for fully plastic state 

 1/ 2 0.5    become: 
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Neglects density parameter (m = 0), transitional stresses and angular speed from eqs. (20)- (22) 

becomes: 
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and without density variation parameter, stresses and angular speed for fully plastic state from eqs. 

(24), (25) and (26) becomes: 
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3. Numerically Discussion 

 

For calculating the stresses based on the above analysis, the following values have been taken as C 

= 0.00, 0.25, 0.5, 0.75, m = 0, 1, 2 respectively. Curves have been drawn in figure 2 between angular 

speed 
2

i  required for initial yielding and various radii ratios baR /0   for C = 0, 0.25, 0.5 at m = 0, 
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1, 2. It has been observed that the rotating disc made of incompressible material required higher 

angular speed for initial yielding as compared to disc made of compressible materials. With effect of 

density variation parameter, rotating disc requires lesser angular speed as compared to without 

density variation parameter. It can also be seen from Table 1 that for compressible material higher 

percentage increased in angular speed is required to become fully plastic as compared to rotating 

disc made of incompressible material. 

 

 
 

Figure 2: Angular speed required for Initial Yielding State along the Radii Ratio Ro = a/b. 

 

Table 1: Angular Speed Required for Initial Yielding and Fully Plastic State 

 

   
   

   
   

   
   

   
   

   
   

   
   

 0
. 
5

 <
  
  
R

  
<

  
1

.0
 

          

Variable 

density 

parameter 

m 

Compressibility 

of Material 

C 

Angular Speed 

required for 

initial yielding 

(
2

i ) 
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
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







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


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0 

1 

2 

0 

0 

0 

1.420161  

1.104569 

0.828427 

2.008411 

1.562097 

1.171573 

    18.92071307% 

    18.92073204% 

    18.92072679% 

0 

1 

2 

0.25 

0.25 

0.25 

1.383601 

1.076134 

 0.8071 

2.008411 

1.562097 

1.171573    

    20.48163765% 

    20.48162673% 

    20.48167691% 

0 

1 
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0.5 

0.5 

0.5 

1.336737 

1.039684 

0.779763 

2.008411 

1.562097 

1.171573 

    22.57539772% 

    22.57539993% 

    22.57541301% 

 

In figures 3 and 4, curve have been drawn between stresses and radii ratio R = r/b for elastic-plastic 

transition state and fully plastic state. It has been seen circumferential stresses is maximum at the 

internal surface for incompressible materials (C = 0) as compared to compressible materials (C = 

0.25, 0.5). Density variation parameter has a quit effect on circumferential stresses i.e. with the 

introduction of density variation parameter it decreases the values of circumferential stresses at the 

internal at the internal surface for transitional state and for fully plastic state. Rotating disc is likely to 

fracture by cleavage close to the bore. 
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Figure 3: Stresses Distribution in a Thin Rotating Disc for Initial Yielding State along the Radius Ratio R = r/b. 

 

 
 

Figure 4: Stresses Distribution in a Thin Rotating Disc for Fully-Plastic State along the Radius Ratio R = r/b. 

 

4. Conclusion 

 

It has been observed that with the effect of density variation parameter, rotating disc requires lesser 

angular speed for compressible as well as incompressible material. Circumferential stresses are 

maximum at the internal surface for incompressible materials as compared to compressible material. 

Rotating disc is likely to fracture by cleavage close to the bore. 
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Abstract Two integral transforms involving the function 3F occurring in the Kernels are considered. 

The function 3F  is the familiar Appell Hypergeometric function. They generalize the Saigo and 

classical Riemann-Liouville fractional integral operators. Formulas for compositions of such 

generalized fractional integrals with the product of Bessel functions of the first kind are proved. 

Special cases for the product of cosine and sine functions are given. The results are established in 

terms of generalized Lauricella function due to Srivastava and Daoust. Corresponding assertions for 

the Saigo and Riemann-Liouville fractional integrals are presented. (AMS subject classification 
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1. Introduction 

 

This paper deals with two generalized fractional calculus operators involving Appell function- 3F are 

defined by Saigo and Maeda [15] where , , , , C        and   0 Re 0x    by  
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          (1.1) 

where the function  f x  is analytic in a simply-connected region of the complex x -plane containing 

the origin and it is understood that  x t  denotes the principal value for  0 arg 2x t    . 

and   
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Here,    is the Euler gamma function [1, Section 1], 

 Re   denotes the real part of , and  3 , , , ; ; ,F z        is the familiar Appell hypergeometric 

function defined by:  

 
       

 
 3

0 0
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m n m n
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F z z
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 
                             (1.3) 

where  
m

z  and  
n

z  are the Pochhammer symbol defined by z C  and 

   0, 0 , 1,2,3,...m n N N N     by 
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1, 1 ... 1
m

z z z z z m       or       1 ... 1
n

z z z z n       ,m n N                (1.4) 

The series in (1.3) is absolutely convergent for  

 1, 1z    and  1, 1z          where  , 1z                                                         (1.5) 

Operators (1.1) and (1.2) were defined by Saigo and Maeda [15] and their properties were 

investigated by many authors, see bibliography. 

 

1. Definition  

 

It may be observed that from (1.1) for , 0, ,                                           (1.6) 

we obtain the relationship  
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in terms of the Saigo type fractional integral operator 
, ,

0,xI   
 [9], and this reduces to the Riemann-

Liouville fractional integrals if we put     [16], then 
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We investigate compositions of integral transforms (1.1) and (1.2) with the product of Bessel function 

of the first kind  vJ z , which is defined for complex  0z C z   and   Re 1v C v    by [2, 

7.2 (2)]. 
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We prove that such compositions are expressed in terms of the generalized Lauricella function due to 

Srivastava and Daoust. [6], which is defined by 
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the coefficients  
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                                                     (1.12) 

are real and positive, and (a) abbreviates the array of A parameters 
  1,..., ,
k

Aa a b  abbreviates 

the array of 
 k

B  parameters
      1,..., 1,...,
k k

jb j B k n   , with similar interpretations for  c  

and    1,2,...,kd k n . 

 
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z  is a generalized of the Pochhammer symbol (1.4)  

 
 

 
 , ,

n

z n
z z n C

n

 
 


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The multiple series (1.11) converges absolutely either  

(i)   10 1,..., ,..., ,j ni n z z C      or  

(ii)    10 1,..., , ,..., , 1,...,j n i ii n z z C z i n        and divergent when  

 0 1,..., ;i i n   except for the trivial case 1 ..... 0nz z   , where  
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                                                       (1.16) 

For more details see [6].Special cases of (1.11) are established in terms of generalized 

hypergeometric function of one and two variables respectively, for the sake of completeness we 

define these functions here. A generalized hypergeometric function  p qF z  is defined for complex  

 , , 0, 1,.... 1,2,..., ; 1,2,...,i j ja b C b i p j q      by the generalized hypergeometric series 

[1, 4.1(1)]:  
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The series is absolutely convergent for all values of z C  if ;p q  and it is an entire function of z. 

We define a generalization of the Kampé de Fériet function by means of the double hypergeometric 

series [6].  
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                                              (1.18) 

This paper is organized as follows. Formulas for compositions of integral transforms (1.1) and (1.2) 

with the product of Bessel function (1.10) are proved in terms of generalized Lauricella function (1.11) 

in Section 2 and 3 respectively. 

 

The corresponding results for the Saigo fractional integrals (1.8) and Riemann-Liouville fractional 

integrals (1.9) are also presented in Section 2 and 3. Special cases giving compositions of fractional 

integrals with the product of cosine and sine functions are considered in Section 4. 

 

2. Left-Sided Fractional Integration of Bessel Functions 

 

The results, given in Section 2 and 3 are based on the preliminary assertions giving composition 

formulas of generalized fraction integrals (1.1) and (1.2) with a power function. 

 

Lemma 1. [See 13, equs. (2.11) and (2.12)] Let , , , , .C        

(i) If      Re 0, Re max 0,Re( ),Re                  , then  

, , , , 1 1

0,

( ) ( ) ( )

( ) ( ) ( )
xI x x                  

         

                 


           
                                          (2.1) 

(ii) If        Re 0, Re 1 min Re( ),Re ,Re                   , then 

     , , , , 1 1

,

(1 ) (1 ) (1 )

(1 ) (1 ) (1 )
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        

      



             


            
                               (2.2) 

 

The generalized left-sided fractional integration (1.1) of the product of Bessel function (1.10) is given 

by the following result. 

 

Theorem 1.  

 

Let , , , , , , , jn N v C         and  , ( 1,2,....., )j ja R j n    be such that  

   
1

Re( ) 0, Re( ) 1, Re max 0,Re( ),Re( )
n

j j jj
v v        


                                        (2.3) 

Then there holds the formula  
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Proof: First of all we note that 
i  in (1.14) is given by 1 0i n     ( 1,....., )i n N  , and therefore 

 3:0,...,0

3:1,....,1 .F  in the right hand side of (2.4) is defined. Now we prove (2.4). Applying equation (1.10) by 

using (1.1) and (1.11) with changing the order of integration and summation, we get 
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In compliance with equation (1.11), we get the result in (2.4). This completes the proof of the theorem. 

Now, if we follow Theorem 1 in respective case 0, , ,                . Then we 

have following result: 

 

Corollary 1.1. 
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where  
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         , and  2:0,...,0

2:1,....,1 .F  is given by (1.11). 

 

Now, if we put     in Corollary 1.1 then we have following result: 

 



IJAMS– An Open Access Journal   

 

International Journal of Advanced Mathematics and Statistics 23 

 

Corollary 1.2.   

 

Let , , , jn N v C    and , ( 1,2,....., )j ja R j n     
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Corollary 1.3.  
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                         (2.7) 

where  

1 2 1 2 1 2, , ,a v v b v v c v v                          

1 2 1 2 1 2, ,d v v e v v f v v                            and  

 6:0,...,0

6:1,....,1F   is defined in (1.18). 

This corollary follows from Theorem 1, if we put 1 2 1 22, 1, 1, 1, 1,n a a       by using (1.11) 

and take into account the relation  
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 and  1,2,...,N n                                                              (2.8) 

where  
k

z  is the Pochhammer symbol (1.4). 
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Remark 1. When 1 1 11, 1, 1,n a v v     equation (2.4) is reduced to  
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3. Right-Sided Fractional Integration of Bessel Functions 

 

The following result produce generalized right-hand sided fractional integration involving Appell 

function 3F  (1.2) of the product of Bessel functions.  

 

Theorem 2.  

 

Let , , , , , , , jn N v C        and  , 1,2,...,j ja R j n   be such that 
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Proof: First, we note that i  in (1.14) is given by 1 0 ( 1,2,......, )i n i n N      , and therefore 

 3:0,...,0

3:1,....,1 .F  in the right hand side (3.2) is defined. Now, we prove (3.2). Applying equation (1.10) using 
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(By using Pochhammer symbol  
( )

( )n

a n
a

a

 



 or ( ) ( ).( )na n a a    ). 

In compliance with equation (1.11), we get the result in (3.2). This completes the proof of the theorem. 

Now, if we follow Theorem 2 in respective case 0, , ,                . Then we 

have following result: 

 

Corollary 2.1.   

 

Let , , , , , jn N v C      and , ( 1,2,....., )j ja R j n     
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If we put     in Corollary 2.1 then we have following result: 

 

Corollary 2.2.   
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Corollary 2.3. 

 

Let 
1 2, , , , , , ,v v C         and 1 2 1 2, , ,a a R    be such that  
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,                                 (3.5) 

where 
1 2 1 2 1 21 , 1 , 1 ,f v v g v v h v v                              

1 2 1 2 1 21 , 1 , 1l v v m v v z v v                              and  

 6:0,...,0

6:1,....,1F   is defined in (1.18). 

This corollary follows from Theorem 2, if we put 1 2 1 22, 1, 1, 1, 1,n a a       with using (1.11) 

and take into account the relation (2.8). 
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4. Fractional Integration of Cosine and Sine Functions 

 

For 
1

2
v    and

1

2
v  , the Bessel function ( )vJ z  in (1.10) coincides with cosine- and sine- 

functions, apart from the multiplier
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.                                                                            (4.1) 

 

Theorem 3.  

 

Let , , , , , C         and ( 1,2,....., )ja R j n  , and setting  
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2
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Theorem 1 we deduce the following result:  
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Corollary 3.2.   
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 from Corollary 1.2, we have 
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Corollary 4.1.   

 

Let , , , C      and ( 1,2,....., )ja R j n    
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2
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Corollary 4.2.  
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from Corollary 1.2, we have 
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Similarly, setting 
1 1

1 1
........ , ........

2 2
n nv v v v        and 1 ........ 1n    , and taking 

(4.1) into account, from Theorem 2 and Corollaries 2.1 and 2.2, we get the following results: 

 

Theorem 5.  

 

Let , , , , , C         and ( 1,2,....., )ja R j n   be such that  
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The above result obtained from Theorem 2 by sifting  
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1
........

2
nv v     and 1 ........ 1n     with using (4.1). 
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Corollary 5.2.   

 

Let , C    and ( 1,2,....., )ja R j n   be such that 0 Re( ) Re( )    .Then we have 
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The Corollaries 5.1 and 5.2 obtained from Corollaries 2.1 and 2.2 by setting  

1

1
........

2
nv v     and 1 ........ 1n     with using (4.1). 
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The above result obtained from Theorem 2 by setting  
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2
nv v    and 1 ........ 1n     with taking (4.1) into account. 
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Corollary 6.2.   

 

Let , C    and ( 1,2,....., )ja R j n   be such that 0 Re( ) 1 Re( )    .Then, we have  
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The Corollaries 6.1 and 6.2 obtained from Corollaries 2.1 and 2.2 by sifting 

1

1
........

2
nv v    and 1 ........ 1n     with taking (4.1) into account. 
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Abstract This paper discusses the problem of estimation of population mean in double sampling. In 

fact, in this paper double sampling version of (Singh and Tailor, 2003) has been suggested. The bias 

and mean squared error of the suggested estimators are obtained up to the first degree of 

approximation. The suggested estimator has been compared with simple mean estimator and double 

sampling ratio estimator. An empirical study has been carried out to demonstrate the performance of 

the suggested estimator. 

Keywords Double Sampling, Population, Ratio Type Estimator 

 

1. Introduction 

 

It is a well known fact that the auxiliary information can increase the efficiency of the estimators of 

parameters of importance in survey sampling. It is shown that the estimator due to (Kawathekar and 

Ajgaonkar, 1984) is a member of the proposed class of estimators. Various authors (Kadilar and 

Cingi, 2004; Jhajj et al., 2006; Sodipo and Obisesan, 2007) have defined various estimators including 

ratio, regression, difference etc. for estimating the unknown population parameters of study variable y, 

by using the prior knowledge of population mean X of auxiliary variable x, which is highly correlated 

with study variable y. If the information on population mean X is missing then two phase (double) 

sampling technique has been generally recommended. In the two-phase sampling scheme, a large 

preliminary random sample (called first phase sample) is drawn from the population and information 

on auxiliary variable is taken, which is used to estimate the value of unknown population mean X of 

auxiliary variable x. Then second phase sample is drawn either from the first phase sample or 

independently from the population and observations on both study and auxiliary variable are taken. 

(Housila, 2012) estimated finite population mean in two-phase sampling with known coefficient of 

variation of an auxiliary character.  
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2. Materials and Methods 

 

In this paper double sampling version of (Singh and Tailor, 2003) has been suggested. 

 

3. Results and Discussion 

 

Usual procedure of double sampling is described as below: 

 

(i) A large sample 1S  of size )( Nnn   is drawn and observations are taken only on auxiliary 

variate to estimate population mean of auxiliary variate; 

(ii) Then a sample 2S  of size )( nnn 
 
is drawn either from 1S  (case I) or directly from the 

population of size N to observe both study variate as well as auxiliary variate.  

 

Let us consider a finite population ),...,,( 21 NUUUU  of size N. Let y and x be the study and 

auxiliary variates and 1y  and 1x  be the observations taken on study variate y and auxiliary variate x 

respectively. A sample of size n is drawn to estimation of the population mean Ŷ  of the study variate 

y. 

 

The classical ratio estimator given by (Cochran, 1940) is defined as, 
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When population mean of auxiliary variate X  is not known, double sampling ratio estimator is 

defined as, 
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Where, 
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1
is an unbiased estimator of population mean X  based on sample of size n  

Thus the bias and mean squared error of 
d

RŶ  up to the first degree of approximation is obtained as  
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2. Suggested Estimator 

 

(Singh and Tailor, 2003) utilized information on correlation coefficient xy  between study variate y 

and auxiliary variate x and suggested ratio type estimator as, 
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STŶ  in double sampling is expressed as, 

 

 

 

          

 

To obtain the bias and mean squared error of the suggested estimator
)(ˆ d

STY  we write 

 

                         
)1(),1( 10 eXxeYy   and )1( 2eXx   

 

                          Such that 0)()()( 210  eEeEeE
 

 
2

1

2

0 )( yCfeE 
,

2

1

2

1 )( xCfeE 
,

2

2

2

2 )( xCfeE 
, xyyx CCfeeE 110 )( 

 

 

                        xyyx CCfeeE 220 )( 
,

2

221 )( xCfeeE 
. 

 

Expressing 
)(ˆ d

STY  in terms of ei’ s we have  
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3. Efficiency Comparisons 

 

It is well known under simple random sampling without replacement (SRSWOR) that  

 

           

22
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Comparison of (2.4) and (3.1) shows that the suggested estimator 
)(ˆ d

STY would be more efficient than 

simple mean estimator y  i.e. 
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Comparing of (1.4) and (2.4), it is observed that the suggested estimator 
)(ˆ d

STY  would more efficient 

than ratio estimator in double sampling 
)(ˆ d

RY i.e. 
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4. Empirical Study 

 

To see the performance of the suggested estimator 
d

STŶ  over simple mean estimator y  and double 

sampling ratio estimator 
d

RŶ  two natural population data sets are being considered. Descriptions of 

the population are given below: 

 

Population I: [Source: (Das, 1988)] 

 

X: the number of agricultural laboures for 1961, 

Y: the number of agricultural laboures for 1971,  

 

X  = 25.1110, Y  = 39.0680, N = 278, n = 60, n
'
 = 180 

Cy= 1.4451, Cx = 1.6198, yx  = 0.7213 

 

Population II: [Source: (Cochran, 1977)] 

 

x: The number of rooms per block 

y: The number of persons per block 

 

Y  = 101.1, X  = 58.80, yC  = 0.14450 

xC  = 0.1281, xy  = 0.6500, N = 20, n = 8, n
'
 = 12 
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Table 1: Percent Relative Efficiency of y ,
)()( ˆ,ˆ d

ST

d

R YY  with Respect y  

 

 

Estimator 

PRE )(., y  

Population 

I II 

y  100 100 

)(ˆ d

RY  142.11 117.65 

)(ˆ d

STY  150 125 

 

Table 1 exhibit that the suggested ratio estimator 
)(ˆ d

STY  has highest percent relative efficiency in 

comparison to simple mean estimator y  and double sampling ratio estimator
)(ˆ d

RY . Thus suggested 

estimator
)(ˆ d

STY  is recommended for its use in practice for the estimation of population mean. 

 

In order to improve the efficiency of the estimators, auxiliary information is used at both selections as 

well as estimation stages to improve the efficiency of the estimators. (Cochran, 1940) used auxiliary 

information at estimation stage and proposed ratio estimator. (Murthy, 1964) envisaged product 

estimator, (Searls, 1964) used coefficient of variation of study variate, motivated by (Searls, 1964), 

(Sisodia and Dwivedi, 1981) utilized coefficient of variation of auxiliary variate. (Srivenkataramana, 

1980) first proposed dual to ratio estimator. (Singh and Tailor, 2005) and (Tailor and Sharma, 2009) 

worked on ratio-cum-product estimators. These motivates author to propose a new ratio-cum–dual to 

ratio estimator utilizing dual to ratio estimator of finite population mean. 

 

5. Conclusion 

 

In this paper, the bias and mean squared error of the suggested estimators are obtained up to the first 

degree of approximation. The suggested estimator has been compared with simple mean estimator 

and double sampling ratio estimator. An empirical study has been carried out to demonstrate the 

performance of the suggested estimator. 
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Abstract In present scenario companies started applying six sigma concept in their manufacturing 

process, which results in lesser number of defects compared with existing Shewhart control chart. In 

this article an attempt is made to construct a control chart based on standard deviation with six sigma 

especially planned for companies applying this technique in their business and constructed table also 

presented for the experts to take quick decisions.  

Keywords Control Chart; Process Control; Six Sigma; Six Sigma Quality Level 

 

1. Introduction 

 

The control charts suggested by W.A. Shewhart (1931) was based on 3 sigma control limits. 

Radhakrishnan (2009a, 2009b, 200c, 2010a, 2010b, 2010c, 2011 and 2012) described as if the same 

charts are used for the products of the companies which adopt Six sigma concept in their process, 

and then no point will fall outside the control limits because of the improvement in the quality. So a 

separate control chart is necessary to check the results of the companies, which adopt Six sigma. 

The practice was aimed at taking action to improve the overall performance and the companies, 

which are practicing Six sigma, are expected to produce 3.4 or less number of defects per million 

opportunities. In this research an effort is made to construct a control chart based on the concept Six 

sigma for Standard deviation and the Table 1 is also provided for the experts to build rapid judgments 

on the floor itself.  

 

2. Concepts and Terminologies  

 

Upper Specification Limit (USL) 

 

It is the greatest amount specified by the producer for a process or product to have the acceptable 

performance. 
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Lower Specification Limit (LSL) 

 

It is the smallest amount specified by the producer for a process or product to have the acceptable 

performance. 

 

Tolerance Level (TL) 

 

It is the difference between USL and LSL, TL = USL-LSL 

 

Process Capability (Cp)  

 

This is the ratio of tolerance level to six times standard deviation of the process.  

               

 

Standard Deviation ( ) 

 

For many purposes standard deviation is the most useful measure of dispersion of a set of numbers. 

It is the root mean square value.  

 

Quality Control Constant
1
 ( 6O  )  

 

The constant 6O  introduced in this paper to determine the control limits based on six sigma 

initiatives for standard deviation.  

 

Quality Control Constant
2
 ( 4c

)  

 

The constant 4c
introduced in this paper to determine the control limits based on 3sigma for standard 

deviation.  

 

3. Construction of Control Chart Based on Six Sigma Initiatives for Standard Deviation 

 

Fix the tolerance level (TL) and process capability (CP) to determine the process standard deviation 

( 6
). Apply the value of 6

in the control limits
  4

2

6 61S O c    

, to get the control limits 

based on six sigma initiatives for Standard deviation. The value of 6O   is
 

obtained using 
6

6 1 1(z z ) 1 , 3.4 x 10p       
and z is a standard normal variate. For a specified TL and CP of the 

process, the value of  (termed as 6
) is calculated from 

6
p

TL
c


 using a C program and 

presented in Table 1.2 for various combinations of TL and CP. The control limits based on six sigma 

initiatives for Standard deviation chart are  
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Table 1: Values for a specified Cp and TL 

 

TL 

 

Cp 

0.0131 0.0132 0.0133 0.0134 0.0135 

1.0 0.0022 0.0022 0.0022 0.0022 0.0023 

1.1 0.0020 0.0020 0.0020 0.0020 0.0020 

1.2 0.0018 0.0018 0.0018 0.0019 0.0019 

1.3 0.0017 0.0017 0.0017 0.0017 0.0017 

1.4 0.0016 0.0016 0.0016 0.0016 0.0016 

1.5 0.0015 0.0015 0.0015 0.0015 0.0015 

1.6 0.0014 0.0014 0.0014 0.0014 0.0014 

1.7 0.0013 0.0013 0.0013 0.0013 0.0013 

1.8 0.0012 0.0012 0.0012 0.0012 0.0013 

1.9 0.0011 0.0012 0.0012 0.0012 0.0012 

2.0 0.0011 0.0011 0.0011 0.0011 0.0011 

2.1 0.0010 0.0010 0.0011 0.0011 0.0011 

2.2 0.0010 0.0010 0.0010 0.0010 0.0010 

2.3 0.0010 0.0010 0.0010 0.0010 0.0010 

2.4 0.0009 0.0009 0.0009 0.0093 0.0009 

2.5 0.0009 0.0009 0.0090 0.0089 0.0009 

 

4. Conditions for Application 

 

 Human involvement should be less in the manufacturing process 

 The company adopts Six sigma quality initiatives in its processes 

 

Example  

 

The following results of inside Diameter Measurement (mm) for Automobile Engine Piston Rings.   

 

Table 2: Inside Diameter Measurement (mm) for 

Automobile Engine Piston Rings and Standard deviation ( iS
) 

Sample 

Number 

 

Observation iS
 

1 74.030 74.002 74.019 73.992 74.008 0.0148 

2 73.995 73.992 74.001 74.011 74.004 0.0075 

3 73.988 74.024 74.021 74.005 74.002 0.0147 

4 74.002 73.996 73.993 74.015 74.009 0.0091 

5 73.992 74.007 74.015 73.989 74.014 0.0122 

6 74.009 73.994 73.997 73.985 73.993 0.0087 

7 73.995 74.006 73.994 74.000 74.005 0.0055 

8 73.985 74.003 73.993 74.015 73.988 0.0123 

9 74.008 73.995 74.009 74.005 74.004 0.0055 

10 73.998 74.000 73.990 74.007 73.995 0.0063 

11 73.994 73.998 73.994 73.995 73.990 0.0029 

12 74.004 74.000 74.007 74.000 73.996 0.0042 

13 73.983 74.002 73.998 73.997 74.012 0.0105 

14 74.006 73.967 73.994 74.000 73.984 0.0153 

15 74.012 74.014 73.998 73.999 74.007 0.0073 

16 74.000 73.984 74.005 73.998 73.996 0.0078 

17 73.994 74.012 73.986 74.005 74.007 0.0106 

18 74.006 74.010 74.018 74.003 74.000 0.0070 

19 73.984 74.002 74.003 74.005 73.997 0.0085 
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n = 5 and S = 0.0094 

 

4.1a. Three Sigma Control Limits for Standard Deviation Chart  

 

The 3σ control limits suggested by Shewhart (1931) are 
   4
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      For n = 4, 4 0.9400c 
 (Quality control factor, W.A.Shewhart)    
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From the resulting Figure 1 that the process is in control, since all the samples lie inside the control 

limits.   

 

4.1b. Control Limits Based on Six Sigma Initiatives for Standard Deviation Chart 

 

For a given TL = 0.0133 (USL-LSL =0.0162-0.0029) & Cp = 1.5, it is found from the Table 1 that the 

value of 6
is 0.0015. The control limits based on six sigma initiatives for Standard deviation chart  

 

for a specified TL and 6O  are  
  4

2
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  with   
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From the resulting Figure 1 that the sample numbers 1, 3, 5, 8, 14, 21 and 25 goes above the upper 

control limit and the sample numbers 7, 9, 10, 11 and 12 goes below the lower control limit. Therefore 

the process does not exhibit statistical control. 

20 74.000 74.010 74.013 74.020 74.003 0.0080 

21 74.982 74.001 74.015 74.005 73.996 0.0122 

22 74.004 73.999 73.990 74.006 74.009 0.0074 

23 74.010 73.989 73.990 74.009 74.014 0.0119 

24 74.015 74.008 73.993 74.000 74.010 0.0087 

25 73.982 73.984 73.995 74.017 74.013 0.0162 
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Figure 1: Comparison of the process: 3 limits and control limits using Six Sigma initiatives 

 

5. Conclusion  

 

In this paper, a procedure is given to construct a control chart based on six sigma initiatives for 

Standard deviation with an example. It is found that the process was not in control even when Six 

Sigma initiatives are adopted. It is very clear from the comparison that when the process is centered 

with reduced variation many points fall outside the control limits than the 3 sigma control limits, which 

indicate that the process is not in the level it was expected. So a correction in the process is very 

much required to reduce the variations. In future, all the companies are adopting this technique 

instead of the existing Shewhart chart in their organization.  
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Abstract A design which is having more number of factors than the number of design points is called 

a Super-saturated Design. In this paper, an attempt is made to propose two new series of 

constructions of super-saturated designs using mutual orthogonal Latin squares and balanced 

incomplete block designs and the methods are illustrated with suitable examples. 

Keywords Balanced Incomplete Block Design; Mutual Orthogonal Latin Squares; Super-Saturated 

Design 

 

1. Introduction 

 

If the number of factors or factor combinations is more, and only few measured are interest to study, 

then eliminate the insignificant factor combinations which are not affecting much the response that is 

the loss of information due to the elimination of factors should be as minimum as possible. High-

dimensional datasets makes many mathematical challenges in fitting and give rise to new theoretical 

developments, which reduces the time, cost, effort and complexity by reducing its dimension. To 

minimize the number of design points, identify the active factors for efficient utilization of resources. 

The knowledge of each and every main effect may not useful since insignificant factors are not 

usually of interest. Reduce the number of design points or chose the design with minimum design 

points and optimum. These designs reduce the experimental cost and time significantly due to their 

run size. 

 

Scatterthwaite (1959) initially constructed a new class of balanced designs randomly with a property 

that number of design points is equal to the number of factors and Booth and Cox (1962) proposed a 

systematic method of construction of designs in which the number of factors exceeds the number of 

design points. Let ‘p’ be the number of factors and ‘n’ be the number of design points in a design. 

Then the saturated and super saturated designs can be defined as  

 

Definition 1.1: A design X is said to be ‘saturated’ if the number of design points ‘n’ is equal to the 

number of factors ‘p’ plus one i.e. n=p+1. 

Definition 1.2: A design X is said to be a super-saturated design, if the number of factors “p” is more 

than the number of design points ‘n’ i.e. p > n. 
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Designs satisfying the orthogonality are more preferred due to their optimality. If it is not possible to 

conduct the experiment with orthogonal design, search for designs that are near orthogonal. For such 

designs, the lack of orthogonality can be measured based on the covariance’s.  

 

Definition 1.3: A design X is said to be E(s
2
)-optimal super-saturated if a super-saturated design 

possessing the property that the mean of 
2

ijs of all pairs (i, j) for ( i≠ j ) is minimum.  

 

2. Literature Review on Super-Saturated Designs 

 

After Booth and Cox (1962), several authors like Lin (1993), Nguyen (1996), Cheng (1997), Li and 

Wu (1997) Tang and Wu (1997), Deng, Lin and Wang (1999), Fang, Lin and Ma (2000), Liu and 

Zhang (2000), Lu and Sun (2001), Butler, Mead, Eskridge and Gilmour (2001), and Yamada and Lin 

(2002), Li and Lin (2003), Liu and Dean (2004), Fang, Gennian and Liu (2004), Aggarwal and Gupta 

(2004), Xu and Wu (2005), Koukouvinov, Mantos and Mylona (2007), Jones, Lin and Nachtsheim 

(2008), Nguyen and Cheng (2008), Sun, Lin and Liu (2011), Liu and Liu (2012), Gupta and Morales 

(2012), Chatterjee, K., Koukouvinos, C, Mantas, P and Skountzou, A (2012), Hung, C., Lin, D.K.J., 

and Liu M.Q. (2012), Mbegbu, J.I., and Todo, C.O. (2012), Liu, Y. and Liu, M.Q. (2013), Miller, A., 

and Tang, B, (2013), Ameen Saheb and Bhatracharyulu (2013, 2014) etc. made attempts on the 

construction of super-saturated designs with their E(s
2
) optimality.  

 

Lin (1993), Li and Wu (1997) motivated towards the construction of super-saturated designs through 

column wise, pair wise exchanges. They differ from the k-exchange algorithms in two aspects, one is, 

they exchange columns instead of rows of the design matrix and another one is, they employ a pair 

wise adjustment in the search for a better column. Deng, Lin and Wang (1999) studied the properties 

of super-saturated designs and proposed a criterion based on the projection property called 

resolution rank.  

 

Fang, Lin, and Ma (2000) proposed a construction procedure by embedding a saturated orthogonal 

design into a uniform design of the same row size. They adopt the collapsing method from Addelman. 

The basic idea of the construction method is, to collapse a multi-level factor into several low-level 

factors, where they collapse U-type uniform designs. They proposed five criteria for comparing multi-

level super-saturated designs.  

 

Liu and Zhang (2000) proposed a general algorithm for the construction of E(s
2
) optimal super-

saturated designs from cyclic BIBD. The general formula for the lower bound of a super-saturated 

design with ‘m’ factors with ‘n’ design points is [n
2
(m-n+1)] / [(n-1)(m-1)]. Lu and Sun (2001) proposed 

two criteria denoted by E(s
2
) and max{(s

2
)} in the construction of multi-level super-saturated designs. 

Eskridge, Gilmour, Mead, Butler and Travnicek (2001) and Liu and Dean (2002) also considered 

cyclic generation of E (s
2
)-optimal and nearly optimal super-saturated designs. 

 

Fang, Gennian and Liu (2002) proposed a discrete discrepancy as a measure of uniformity for super-

saturated designs and a lower bound of this discrepancy is obtained as a benchmark of design 

uniformity and also proposed construction procedure for uniform super-saturated by using resolvable 

BIBD along with their properties. Yamada and Lin (2002) suggested a construction method for mixed-

level super-saturated designs consisting of two-level and three-level columns. The chi-square 

statistics is used for a measure of dependency of the design columns. The dependency properties for 

the newly constructed designs are derived and discussed. Li and Lin (2002) proposed variable 

selection procedure to screen active effects in the super-saturated designs via non-convex penalized 

least squares approach and empirical comparison with Bayesian variable selection approaches is 

made.  
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Liu and Dean (2004) proposed a class of super-saturated designs called k- Circulant super-saturated 

designs which can be obtained from cyclic development of a generator. This method is a 

generalization of Plackett-Burman, who introduced the use of cyclic generators for constructing 

orthogonal saturated designs. 

 

Fang Kaitai, Gennian G.E., and Liu Minqian (2004) proposed a combinatorial approach called the 

packing method. They studied the connection between orthogonal arrays and resolvable packing 

designs for constructing optimal super-saturated designs and properties of the resulting designs are 

also proposed. Aggarwal and Gupta (2004) proposed construction method for multi-level super-

saturated designs based on Galois field theory. Xu and Wu (2005) proposed construction methods for 

multi-level super-saturated designs inspired by Addelman- Kempthorne of orthogonal arrays and also 

proposed new lower bound for multi-level super-saturated designs. 

 

Koukouvinov, Mantas and Mylona (2007) proposed mixed-level super-saturated designs by using 

supplementary difference sets with respect to the E(fNOD) criterion. Nguyen and Cheng (2008) 

suggested the construction procedure for super-saturated designs from BIBD and also from regular 

graph designs when BIBD do not exist. Jones, Lin and Nachtsheim (2008) proposed a new class of 

super-saturated designs by using Bayesian D-optimality for arbitrary sample sizes and for any 

number of blocks of any size and also incorporate categorical factors with more than two levels.  

 

Sun, Lin and Liu (2011) proposed equivalent conditions for two columns to be fully aliased and 

consequently proposed methods for constructing E(fNOD) and chi-square optimal mixed level super-

saturated designs without fully aliased columns via equidistant designs and difference matrices. 

 

Gupta, Hisano and Morales (2011) proposed a systematic method of construction for optimal k-

circulant multi-level supersaturated designs and also constructed two-level designs using resolvable 

BIBD. Liu, Y., and Liu, M.Q., (2011) proposed a new method for constructing mixed-level designs with 

relatively large number of levels avoiding the blind search and numerous calculations by computers. 

The goodness of the resulting supersaturated design is judged by the χ
2
 and J2 criteria’s. 

 

Mandal B.N., Gupta, V.K., and Prasas, R., (2011) proposed an algorithm to construct efficient 

balanced multi-level K-circulant supersaturated designs with ‘m’ factors and ‘n’ runs and they also 

constructed 60 factor and 10 levels multi-level supersaturated designs. 

 

Liu and Liu (2012) generalized a method proposed by Liu and Lin to the mixed level case and also 

they proposed two new practical methods for constructing optimal mixed level supersaturated 

designs. 

 

Gupta (2012) extended the work from two level to s-level balanced supersaturated designs. Gupta 

and Morales (2012) proposed tabu search method for constructing E(s
2
)-optimal and minimax –

optimal k-circulant supersaturated designs. Chatterjee, K., Koukouvinos C., Mantas, P., and 

Skountzou, A. (2012) proposed E(fNOD)-optimal multi-level supersaturated designs with a large 

number of columns based on the new supplementary difference sets method.  

 

Hung, C., Lin, D.K.J., and Liu M.Q. (2012) proposed a new criterion for supersaturated designs with 

quantitative factors. Mbegbu, J.I., and Todo, C.O. (2012) proposed E(s
2
)-optimal supersaturated 

designs with an experimental run size n=20 and number of factors m=57(multiple of 19). This 

construction is based on BIBD using a theorem proposed by Bulutoglu and Cheng. 

 

Liu, Y., and Liu, M.Q. (2013) proposed complementary design method. The basic principle of this 

method is that for any existing E(fNOD) optimal supersaturated whose E(fNOD) value reaches its lower 

bound, its complementary design in the corresponding maximal balanced design is also E(fNOD) 

optimal. This method applies to both symmetrical and asymmetrical cases. 
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Miller, A., and Tang, B. (2013) proposed supersaturated designs using minimal dependent sets 

(MDS) of columns in the design matrix. Ameen Saheb and Bhatracharyulu (2013, 2014) proposed 

two level supersaturated designs by using cyclic resolvable designs and also they proposed two new 

methods for constructing supersaturated designs using row-column and cyclic resolvable designs. 

 

In this paper, an attempt is made propose to construct supersaturated designs using Balanced ‘n’ 

array Block Designs and Balanced Incomplete Block Designs. 

 

3. Construction of Two Level Super-Saturated Designs 

 

In this section, an attempt is made propose to construct two level supersaturated designs using 

Balanced n-array Block Design’s (BnBD) and Balanced Incomplete Block Designs with suitable 

illustrations is presented. The E(s
2
)-optimal values for the designs are also evaluated.  

 

Method 3.1: Consider a complete set of (n-1) mutually orthogonal Latin squares (MOLS) of order n, 

where ‘n’ is prime or prime power. Arrange the (n-1) MOLS together to form an array of order n(n-1)x 

n consisting of elements p0, p1, … , pn-1 in each row. Replace ‘n1’ of the pi‘s by +1’s, ‘n2’ of the pi ‘s by 

-1’s such that n1 + n2 = n. By considering each row of n(n-1) corresponds to a factor and each column 

as a design point the resulting design is a super-saturated design.  

 

Note: When ‘n’ is even, complete set of mutually orthogonal Latin squares can be considered and 

when ‘n’ is odd either all (n-1) MOLS or a half of complete set, i.e. (n-1)/2 MOLS such that 
n
C2 pairs of 

the ‘n’ elements occur exactly once in any two columned sub matrix of the array of order n(n-1)/2 x n 

can be considered. 

 

Example 3.1: Consider the balanced 5 array design in 10 blocks replace p0 and p1 by ‘-1’ and the 

other pi’s ‘+1’. The resulting supersaturated design with 5 design points and 10 factors is given below. 

 

X=


















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










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1111111111

1111111111

1111111111

1111111111

 

The expected value of s
2
 of the design is 3.6. 

 

Method 3.2: Consider a Balanced incomplete Block Design with parameters v, b, r, k and λ whose 

incidence matrix is N
*
. Obtain the matrix N1 0’s with -1 in N

* 
and obtain the matrix N2 by replacing ‘1’ 

with ‘-1’ and 0’s with 1’s. A super saturated design X can be constructed with ‘v’ design points in ‘2b’ 

factors as X = [N1   N2]′ where N2 is replacing ‘1’ by ‘-1’ and ‘-1’ by ‘1’ of N1.  

 

Remark: When v=2k, X′X is singular then design matrix X has to be modified suitably given by X
*
=[X  

J   -J]′ where ‘J’ be a vector of unities. 

 

Example 3.2: Consider a BIBD with parameters v=7=b, r=3=k, λ=1 whose incidence matrix is N
*
. By 

delivering the matrices N1 and N2 by replacing the 0 by -1 and 0 by 1 and 1 by -1 respectively. The 

resulting supersaturated design is 
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X= 
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The expected value of s
2
 of the design is 4.65. 

 

4. Concluding Remarks 

 

Using the proposed methods, it is possible to estimate maximum number of main effects when 

compared to any other super-saturated designs. It found that the proposed methods of supersaturated 

designs are more efficient than the existed Booth and Cox designs. 
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Abstract In the present article the multivariate central limit theorem is revisited. Rather than simply 

reviewing existing methodology our approach mostly aims at giving particular emphasis on some 

univariate techniques that support the proof of this theorem. On those grounds all necessary 

mathematical arguments are duly provided.  

Keywords Characteristic Function; Convergence in Distribution; Normal Distribution  

 

1. Introduction 

 

The well-known central limit theorem for independent and identically distributed vector random 

variables is a very important result since it allows for an approximate normal distribution for the mean 

(and, equivalently, for the sum) of a sequence of a very large number of variables which satisfy the 

aforementioned properties; thus it has been extensively mentioned and used in existing literature. 

The idea of the present article emanates from Theorem 29.4 of [2, p. 383], and a subsequent 

comment, namely that “certain limit theorems can be reduced in a routine way to the one-dimensional 

case”. Based on that comment our intention is therefore to revisit the proof of this theorem in view of 

providing a detailed description of the way statistical theory that is used in the one-dimensional case 

(mentioned in the text as the univariate case) applies in a straightforward manner in order to deal with 

a multivariate problem.  

 

2. The Multivariate Central Limit Theorem 

 

The multivariate central limit theorem we will focus on is called Theorem 1 and is an early result 

which is very famous and well documented. For instance, it is found as Theorem 3.4.3 in [1, p. 81]. 

We first state this result. 
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Theorem 1 

 

Let 1 2, ,...X X  be a sequence of p-dimensional independent and identically distributed random 

vectors with finite mean vector ( )jE X   and finite variance-covariance matrix

( )( ) 'j jE X X     . Then the asymptotic distribution of 
1

1
( )

n

j

j

X
n




 converges towards a 

normal N(0, ) as n .  

 

Remark that in the univariate case, i.e. the case where p=1, Theorem 1 is just the univariate central 

limit theorem also called the Lindeberg-Lévy theorem (see for example [3, p. 215]). The proof of the 

multivariate central limit theorem, which we provide in the sequel, will be essentially based on 

techniques appearing in the proof of Lindeberg-Lévy’s theorem.  

 

Proof of Theorem 1 

Like in Theorem 3.4.3 of [1, p. 81], we use 1

1
[ ( )]

( , ) [ ( )]

n

j

j

is tX E tXj
n

t s E e 


  as characteristic function 

of
1

1
[ ( )]

n

j j

j

tX E tX
n 

 , for real s, fixed 1( ,..., )pt t t , and 
2 1i   . Also letting 

1

n

j

j

X tX


 , with 

( )jE tX m  and 
2( )jVar tX   we obtain 

1

( ) ( )
n

X j

j

E X m E tX nm


   , and 

2 2

1

( ) ( )
n

X j

j

Var X Var tX n 


    (or in other words
X n  ), since the jX ’s are 

independently distributed. We now adopt the same rationale as that used by [3, p. 215] for the proof 

of the Lindeberg-Lévy theorem. Let ˆ( )u  be the characteristic function of jtX m and ( )u the 

characteristic function of XX m . We have 

1 1[( ) ... ( )]( )( ) ( ) ( ) ( ... )n niu tX m tX m iutXiutXiu X m iunmu E e E e e E e e        , 

and since the jX ’s are independently distributed we obtain 

1 ˆ ˆ ˆ( ) ( )... ( ) ( )... ( ) [ ( )]niutXiutXium ium nu e E e e E e u u u        (since ˆ( ) ( )jiutXiumu e E e  , for any 

1,...j n ). Then, if ( )u  is the characteristic function of ( )X XX m  , we obtain

( ) ( )

( ) ( ) ( ) ( )
X

X
x X

X m u
iu i X m

X

u
u E e E e

  





   , with ˆ( ) [ ( )]n

X X

u u
 
 

  (since ˆ( ) [ ( )]nu u  ). 

Thus ˆ( ) [ ( )]nu
u

n
 


 .  

 

On the other hand ˆ( ) ( )iuyu e f y dy




  , where ( )j j jY tX E tX  , and by second order Taylor’s 

expansion around 0 we obtain  

                      

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (0) ( 0) '(0) [( 0) 2] ''(0) ( 0) (0) '(0) ( 2) ''(0) ( )u u u o u u u o u                
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where ˆ '( ) ( )iuyu i ye f y dy




   and 
2 2 2ˆ ''( ) ( ) ( )iuy iuyu i y e f y dy y e f y dy
 

 

    .  

Hence we have ˆ(0) ( ) 1f y dy




  , ˆ '(0) ( ) ( ) 0ji yf y dy iE Y




   , and 

2 2ˆ ''(0) ( ) ( )jy f y dy E Y




    , and so we obtain 
2 2 2ˆ( ) 1 [( ) 2] ( ) ( )ju u E Y o u    . 

Finally, since 
2 2( ) ( )j jE Y Var tX   , we obtain 

2 2 2ˆ( ) 1 ( 2) ( )u u o u    .  

Hence 
2 2 2 2ˆ( ) [ ( )] [1 ( 2 ) ( , ) ] (1 2 ( , ) )n n nu

u u n n u n u n n u n
n

     


          

where, for every fixed u , ( , )n u 0 as n .  

 

We now let 
2 2 ( , )x u n n u n   ; then lim ( ) 0n x  and 

2

2

2 / 2 ( , ) /

0 0

1/ / 2 1/ ( , )

0 0

lim (1 2 ( , ) ) lim (1 ) lim (1 )

{lim [(1 ) ] }{lim [(1 ) ] }.

n u x n u x

n x x

x u x n u

x x

u n n u n x x

x x





 

  



 

    

  
  

 

Since a well known result is that 
1/

0lim [(1 ) ]x

x x e   , and on the other hand  n  as 0x   

imply that ( , )n u   0 as 0x  , for fixed u ,  we obtain 
22 /2lim (1 2 ( , ) )n u

n u n n u n e 

    , 

and thus 
2 / 2lim ( ) u

n u e 

   , for any u , 
2 / 2ue

 being continuous at 0u  , with lim (0) 1n   , 

and so we deduce that   is itself a characteristic function (in other words we are not in presence of a 

pathological situation such as that described in exercise 5.12.35 and solution of [5, p. 266]). It results 

from these arguments that ( )u is indeed the characteristic function of ( )X XX m  . On the other 

hand 
2 / 2ue

 is the characteristic function of a standard normal random variable and hence, by the 

continuity theorem for characteristic functions concerning the univariate case (see for instance [4, p. 

190]), ( )X XX m  converges in distribution towards a N(0,1) random variable as n . This is 

equivalent to saying that ( )X nm n converges in distribution towards N(0,
2 ), with 

2 ( ) 'jVar tX t t     (where prime denotes transpose), and thus 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  converges 

in distribution towards a  N(0, 't t ) random variable (see also proof of Theorem 3.4.3 of [1, p. 81]). 

The characteristic function of the latter variable is as given by [4, p. 187], Example (5), and reduces to 

21
'

2
s t t

e




for our case since the mean is 0. Thus we have that for each 1( ,..., )pt t  

                                  

2

1

1
1[ ( )]

'
2lim ( , ) lim ( )

n

j

j

is tX E tXj
s t tn

n nt s E e e 




 


  .   

 

Like in [2, p. 383] or in [1, p. 81], we take 1s   in order to obtain  

                                   
1

1
1[ ( )]

'
2lim ( ,1) lim ( )

n

j

j

i tX E tXj
t tn

n nt E e e 




 


  . 
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Note that 1 1

1 1
[ ( )] ( )

( ,1) ( ) ( )

n n

j j

j j

i tX E tXj it X
n n

t E e E e


  

  
   is the characteristic function of 

1

1
( )

n

j

j

X
n




 . On the other hand 

1
'

2lim ( ,1)
t t

n t e




   is continuous at 

1( ,..., ) (0,...,0) 0pt t t   , with lim (0,1) 1n   , and so by means of the continuity theorem for 

characteristic functions that concern the multivariate case (see Theorem 2.6.4 of [1, pp. 48-49]) we 

have that lim ( ,1)n t  is identical with the characteristic function 

1
'

2
t t

e




 of a normally distributed 

vector random variable N( 0 ,Σ) (see [5, p. 187]), Example (6), or Theorem 2.6.1 of [1, p. 45], for 

documentation on the characteristic function 

1
'

2
t t

e




). We thus conclude that 
1

1
( )

n

j

j

X
n




  

converges in distribution towards a normally distributed N( 0 ,Σ) vector random variable, and hence 

Theorem 1 is proved.  

 

3. Conclusion 

 

The above arguments underline the obvious implication (and thus the crucial role) of univariate 

statistical techniques for proving multivariate results. These techniques arise from the use of the 

random variable 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  and its characteristic function ( , )t s in the proof of Theorem 

1. Remark that they are also involved in the proof of Lindeberg-Lévy’s theorem. Finally it is 

noteworthy to stress that the idea of using the variable 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  and its characteristic 

function in the preceding section occurs naturally in view of Theorem 29.4 of [2, p. 383]. 
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Abstract We introduce the notion of ω-convergence of p-stacks and by using that notion we 

characterize the ω-interior, ω-closure, separation axioms and ω-irresoluteness on a topological 

space. 
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1. Introduction 

 

Generalized open sets play a very important role in General Topology and they are now the research 

topics of many topologists worldwide. Indeed a significant theme in General Topology and Real 

analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing 

generalized open sets. Sundaram and Sheik John [5] introduced a new class of generalized open 

sets called ω-open sets into the field of topology. In this paper, we have introduced and study the 

notion of ω-convergence of p-stacks and by using that notion we characterize the ω-interior, ω-

closure, separation axioms and ω-irresoluteness on a topological space. Also we have introduced a 

new notion of p-ω-compactness and investigate its properties in terms of ω-convergence of p-stacks. 

 

2. Preliminaries 

 

Throughout this paper, spaces always means topological spaces on which no separation axioms are 

assumed unless otherwise mentioned and f : (X,τ) → (Y,σ) (or simply f : X → Y ) denotes a function f 

of a space (X,τ) into a space (Y,σ). Let A be a subset of a space X. The closure and the interior of A 

are denoted by Cl(A) and Int(A), respectively. A subset A of a space (X,τ) is called semi open [1] if A 

⊂ Cl(Int(A)). A subset A of a space X is called ω-closed [5] if Cl(A) ⊂ U whenever A ⊂ U and U is 

semi-open in X. The complement of an ω-closed set is called an ω-open set. The family of all ω-open 

subsets of (X,τ) is denoted by ω(τ). We set ω(X,x) = {V ∈ ω(τ)|x ∈ V} for x ∈ X. The union (resp. 

intersection) of all ω-open (resp. ω-closed) sets, each contained in (resp. containing) a set A in a 

space X is called the ω-interior (resp. ω-closure) of A and is denoted by ω Int(A) (resp. ω Cl(A)) [4]. A 

subset M(x) of a topological space X is called a ω-neighbourhood of a point x ∈ X if there exists a ω-

open set S such that x ∈ S ⊂ M(x). Given a set X, a collection C of subsets of X is called a stack if A 

∈ C whenever B ∈ C and B ⊂ A. A stack H on a set X is called a p-stack if it satisfies the following 

condition: (P) A,B ∈ H ⇒ A    = ∅. Condition (P) is called the pairwise intersection property (P.I.P). A 

collection B of subsets of X with the P.I.P is called a p-stack base. For any collection B, we denote by 

<B> = {A ⊂ X: there exists B ∈ B such that B ⊂ A} the stack generated by B, and if {B} is a p-stack 

base, then <{B}> is a p-stack. We will denote simply <{B}> = <B>. In case x ∈ X and B = {x}, <x> is 
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usually denoted by 
.
x. Let pS(X) denote the collection of all p-stacks on X, partially ordered by 

inclusion. The maximal elements in pS(X) are called ultrapstacks is contained in an ultrapstack. For a 

function f : X → Y and H ∈ pS(X), the image stack f(H) in pS(Y ) has p-stack base {f(H) : H ∈ H}. 

Likewise, if G ∈ pS(Y), f−1(G) denotes the p-stack on X generated by {f−1(G) : G ∈ G}. 

 

Definition 2.1. Let (X,τ) be a topological space. A class {Gi} of ω-open subsets of X is said to be ω-

open cover of X if each point in X belongs to atleast one Gi that is∪ i Gi = X.  

 

Definition 2.2. A subset K of a nonempty set X is said to be ω-compact [4] relative to (X,τ) if every 

cover of K by ω-open sets of X has a finite subcover. We say that (X,τ) is ω-compact if X is ω-

compact. 

 

Definition 2.3. A topological space (X,τ) is said to be:  

 

(i) ω-T1 [3] if for each pair of distinct points x and y of X, there exist ω-open sets U and V 

containing x and y, respectively such that y / ∈ U and x / ∈ V . 

(ii) ω-T2 [3] if for each pair of distinct points x and y of X, there exist ω-open sets U and V such 

that x ∈ U, y ∈ V and U  V = ∅.  

(iii) ω-regular [4] if for any closed set F ⊂ X and any point x ∈ X\F, there exist disjoint ω-open 

sets U and V such that x ∈ U and F ⊂ V . 

 

Lemma 2.4. [2] For H ∈ pS(X), the following are equivalent: 

  

(i) H is an ultrapstack.  

(ii) If A H  = ∅ for all H ∈ H, then A ∈ H;  

(iii) B ∈ H implies X\B ∈ H.  

 

Theorem 2.5. [2] Let f : (X,τ) → (Y,σ) be a function and H ∈ pS(X).  

 

(i) If H is a filter, so is f(H);  

(ii) If H is an ultrafilter, so is f(H);  

(iii) If H is an ultrapstack, so is f(H). 

 

3. ω-convergence of p-stacks  

 

Definition 3.1. Let X be a topological space, x ∈ X and let B(x) = {V ⊂ X: V is a ω-neighbourhood of 

x}. Then we call the family  (x) the ω-neighbourhood stack at x.  

 

Definition 3.2. Let X be a topological space, x ∈ X and let B(x) = {V ⊂ X: V is a ω-neighbourhood of 

x}. Then we call the family  (x) the ω-neighbourhood stack at x. 

 

Theorem 3.3. Let (X,τ) be a topological space. Then we have the following  

 

(i) x ω-converges to x for all x ∈ X.  

(ii) If F ω-converges to x and F ⊂ G for F,G ∈ pS(X), then G ω-converges to x.  

(iii) If both F and G are p-stacks ω-converging to x, then F   G ω-converges to x.  

(iv) If p-stacks Fi ω-converge to x for all i ∈ J, then  Fi ω-converges to x. 

 

Proof. Follows from the definitions. 
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Theorem 3.4. Let (X,τ) be a topological space and A ⊂ X. Then the following are equivalent:  

 

(i) x ∈ ω Cl(A);  

(ii) There is F ∈ pS(X) such that A ∈ F and F ω-converges to x;  

(iii) For all V ∈  (x), A V  = ∅.  

 

Proof. (i) ⇒ (ii): Let x be an element in bCl(A), then U(x) A = ∅ for each ω-open U(x) of x. Let F = 

B(x)∪<A>. Then the p-stack F ω-converges to x and A ∈ F. (ii) ⇒ (iii): Let F be a p-stack and A ∈ F 

and p-stack F ω-converge to x. Then B(x) ⊂ F. Thus since B(x) is a p-stack, we get U  A  = ∅ for all U 

∈ B(x). (iii) ⇒ (i): It is obvious. 

 

Theorem 3.5. Let (X,τ) be a topological space and A ⊂ X. Then the following are equivalent:  

 

(i) x ∈ ω Int(A);  

(ii) For every p-stack F ω-converging to x, A ∈ F;  

(iii) A ∈ B(x).  

 

Proof. (i) ⇒ (ii): Let x be an element in bInt(A) and let F be a p-stack ω-converging to x. Since x ∈ 

bInt(A), there is a ω-open subset U such that x ∈ U ⊂ A, so A ∈  (x). Thus by the definition of ω-

convergence of p-stack, we can say A ∈F. (ii) ⇒ (iii): The ω-neighborhood stack  (x) is always ω-

converges to x. Thus by (ii), A ∈ B(x). (iii) ⇒ (i): It is obvious. 

 

Now by using ω-convergence of p-stacks, we characterize the properties of ω-T1, ω-T2 and ω-

regular induced by ω-open subsets on a topological space.  

 

Theorem 3.6. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-T1;  

(ii)   (x) = {x} for x ∈ X;  

(iii) If ˙x ω-converges to y, then x = y.  

 

Proof. (i) ⇒ (ii): Let y be an element in  (x), then y ∈ U for each ω-open neighborhood U of x. Since 

X is ω-T1, we get y = x. (ii) ⇒ (iii): Let ˙x ω-converge to y. Since B(y) ⊂ ˙ x, x is an element in  (y). 

Thus x = y. (iii) ⇒ (i): Suppose that X is not ω-T1, then there are distinctx and y such that every ω-

open neighborhood of x contains y. Thus B(x) ⊂ ˙ y and ˙y ω-converges to x. This contradicts the 

hypothesis.  

 

Theorem 3.7. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-T2;  

(ii) Every ω-convergent p-stack F on X ω-converges to exactly one point;  

(iii) Every ω-convergent ultrapstack F on X ω-converges to exactly one point.  

 

Proof. (i) ⇒ (ii): Suppose that X is ω-T2 and a p-stack F ω-converges to x. For any y  = x, there are 

disjoint ω-open sets U(x) and U(y) containing x and y, respectively. Since B(x) ⊂ F and F is a p-stack, 

both U(x) and X\U(y) are elements of F. Thus F is not finer than (y), so F doesn’t ω-converge to y. (ii) 

⇒ (iii): It is obvious. (iii) ⇒ (i): Suppose that X is not ω-T2. Then there must exist x, y such that U(x)   

U(y)  = ∅ for every ω-open sets U(x) and U(y) of x and y, respectively. Let F be a ultrapstak finer than 

a p-stack B(x) ⊂  (y). Then F is finer than  (x) and (y), so the ultrapstack F ω-converges to both x 

and y. This contradicts (ii). If (X,τ) is a topological space and F ∈ pS(X), then   = {ω Cl(F) : F ∈ F} is a 

p-stack base on X, and the ω-closure p-stack generated by   is denoted by ω Cl(F).  
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Theorem 3.8. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-regular;  

(ii) For every x ∈ X,  (x) = ω Cl( (x));  

(iii) If a p-stack F ω-converges to x, then the ω-closure p-stack ω Cl(F) ω-converges to x. 

 

Proof. (i) ⇒ (ii): Let F be an element in B(x). There exists a ω-open neighborhood U(x) such that U(x) 

⊂ F. Since X is ω-regular, there is a ω-open neighborhood W(x) of x such that W(x) ⊂ ω Cl(W(x)) ⊂ 

U(x) ⊂ F. Since ω Cl(W(x)) ∈ ω Cl( (x)) and ω Cl( (x)) is a pstack, F ∈ ω Cl( (x)). (ii) ⇒ (iii): Let a p-

stack F ω-converge to x. Then B(x) ⊂ F, and so ω Cl( (x)) ⊂ ω Cl(F).  y (ii), we get that ω Cl(F) ω-

converges to x. (iii) ⇒ (i): Let U be a ω-open set containing x ∈ X. Since  (x) ω-converges to x, by (iii) 

ω Cl( (x)) ω-converges to x, and so U ∈ ω Cl( (x)). Then by the definition of the ω-closure of p-

stacks, we can get a ω-open neighborhood V of x such that V ⊂ ω Cl(V ) ⊂ U.  

 

Definition 3.9. A function f: (X,τ) → (Y,σ) is said to be ω-irresolute [4] if f−1(V ) is ω-closed (resp. ω-

open) in X for every ω-closed (resp. ω-open) subset V of Y. 

 

Theorem 3.10. Let X and Y be topological spaces. Then a function f : (X,τ) → (Y,σ) is ω-irresolute if 

and only if for each x in X and each ω-neighborhood U of f(x), there is a ω-neighborhood V of x such 

that f(V ) ⊂ U. Now we get another characterization of the ω-irresolute function on a topological space 

using the notion of p-stacks.  

 

Theorem 3.11. For a function f : (X,τ) → (Y,σ), the following statements are equivalent: (i) f is ω-

irresolute; (ii) B(f(x)) ⊂ f(B(x)) for all x ∈ X; (iii) If a p-stack F ω-converges to x, then the image p-stack 

f(F) ω-converges to f(x). 

 

Proof. (i) ⇒ (ii): Let V be any member of B(f(x)) in Y. Then there is a ω-open set W such that W ⊂ V. 

Since f is ω-irresolute, there exists a ω-open neighborhood U ∈ B(x) such that f(U) ⊂ W ⊂ V , thus V 

∈ f(B(x)). (ii) ⇒ (iii): It is obvious. (iii) ⇒ (i): If f is not ω-irresolute, then for some x ∈ X, there is a ω-

open neighborhood V ∈ B(f(x)) such that for all ω-open neighborhood U ∈ B(x), f(U) is not included in 

V. For all U ∈  (x), since f(U) (Y V )  = ∅, we get a p-stack F = f(B(x))∪ Y V  . And since U  f−1(Y V 

)  = ∅, also we get a p-stack G = B(x)∪f−1 Y\V   which ω-converges to x. But since f(G) is a finer p-

stack than F and Y\V ∈ F, f(G) can’t ω-converge to f(x), contradicting to (iii). 

 

Now we introduce a new notion of p-ω-compactness by p-stacks and investigate the related 

properties. 

 

Definition 3.12. Let (X,τ) be a topological space and A be a subset of X. A subset A of a topological 

space (X,τ) is p-ω-compact if every ultrapstack containing A ω-converges to a point in A. A 

topological space (X,τ) is p-ω-compact if X is p-ω-compact. 

 

Let X = {a,b,c}. In case τ is the discrete topology, let H be an ultrapstack containing a p-stack F 

generated by {{a,b},{b,c},{a,c}}. Then it doesn’t ω-converge to any point in X. Thus the topological 

space (X,τ) is not p-ω-compact.  ut in case τ = {∅,{a},{b,c},X}, the topological space (X,τ) is p-ω-

compact.  

 

Theorem 3.13. If a topological space (X,τ) is p-ω-compact and A ⊂ X is ω-closed, then A is p-ω-

compact. 

 

Proof. Let F be an ultrapstack containing A. From Definition 3.12, there is x ∈ X such that F ω-

converges to x. Thus B(x) ⊂ F, and since A ∈ F and F is a p-stack, A V  = ∅ for all V ∈ B(x). So by  
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Theorem 3.4, we can say x ∈ ω Cl(A) = A.  

 

Theorem 3.14. The ω-irresolute image of a p-ω-compact set is p-ω-compact.  

 

Proof. Let a function f : (X,τ) → (Y,σ) be ω-irresolute, let AX be p-ω-compact, and let H be an 

ultrapstack containing f(A). If G is an ultrapstack containing the p-stack base {f−1(H) : H ∈ H}∪<A>, 

then for some x ∈ A, G ω-converges to x, and H = f(G) ω-converges to f(x). Thus, f(A) is p-ω-

compact.  

 

Theorem 3.15. A topological space (X,τ) is p-ω-compact if and only if each ω-open cover of X has a 

two-element subcover. 

 

Proof. Suppose H is an ultrapstack in X such that it doesn’t ω-converge to any point in X. Then for 

each x ∈ X, there is a ω-open subset Ux ∈ B(x) such that Ux / ∈ H. By Lemma 2.4(iii), X\Ux ∈ H, for 

allx ∈ X. Thus U = {Ux : x ∈ X} is a ω-open cover of X. But U has no two-element subcover of X, for if 

U,V ∈ U and X ⊂ U ∪V , then (X\U) (X\V ) = X\(U ∪V ) = ∅, contradicting the assumption that H is a 

p-stack. Conversely, let U be a ω-open cover of X with no two-element subcover of X. Then B = {X\U: 

U ∈ U} is p-stack base, and any ultrapstack containing   cannot ω-converge to any point in X. 
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