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Abstract The segmentation of sky cloud images is a complex task essential for applications like weather 

analysis. Compared to all-sky imagers, horizon-oriented cameras provide a more detailed view of clouds 

near the horizon. In our study, we evaluated three semantic segmentation models: HRNet48, PPLite, 

and SegFormerB3, utilizing a variety of loss functions on a novel dataset of horizon cloud images. 

Throughout our experiments, we consistently observed segmentation leakage issues. To address this, 

we introduced machine learning-based post-processing methods, including random forest and xgboost, 

that leverage region-specific features to refine the segmentation. Our results showed notable 

improvements, with the Cumuliform class dice score increasing from 0.552 to 0.583, and Stratiform class 

accuracy improving from 0.49 to 0.511 when applying xgboost on SegFormerB3's output. The study 

revealed the relative contributions of the loss functions and post-processing steps. 
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1. Introduction 
 

Classifying clouds is crucial in meteorology, aviation, and environmental science for understanding 

weather patterns, precipitation, air quality, and flight safety. Visual observation is subjective, so artificial 

neural networks (ANNs) are used to automate cloud type classification from sky images, providing more 

accurate and consistent results (Veremev, 2021). At airports, accurately determining cloud ceiling height 

is vital for safe takeoffs and landings. For example, at Bombay airport, low cloud ceilings linked to wind 

shear impact visibility and operations (Kumar and Patkar, 2022). Also, studying cloud cover properties 

aids weather prediction, precipitation quantification, and analyzing air mass movement over oceans. 

 

Cloud classification is a nuanced task traditionally undertaken by organizations like the World 

Meteorological Organization (WMO), which categorizes clouds by shape, clustering, and base height. 

The WMO Cloud Atlas1 further subdivides clouds into specific groups. In addition to traditional 

classifications, clouds can be characterized by their albedo or reflective properties, which set them apart 

 
1 https://cloudatlas.wmo.int/en/cloud-classification-summary.html 
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from other outdoor objects. Due to their higher reflectivity in the visible spectrum, clouds present unique 

detection challenges, often constrained by camera scale limitations (Mantelli et al., 2020). Regular 

objects usually reflect local radiation, failing to capture the unique albedo attributes of clouds and the 

surrounding landscape in sunlight. Thus, brightness alone is inadequate for cloud distinction. Some 

modern computer vision (CV) techniques go beyond conventional approaches by utilizing cross-

classification, dividing clouds into five physical forms: 

 

- Stratiform (Cirrostratus, Altostratus, Stratus and Nimbostratus) 

- Cirriform (Cirri) 

- Stratocumulus (Cirrocumulus, Altocumulus and Stratocumulus) 

- Cumuliform (Cumulus) 

- Cumulonimbus (cumulonimbus) 

 

These classifications consider opacity, structure, and formation processes, aligning with the 

methodologies proposed by (Song et al., 2020). The complexity of clouds extends to their segmentation 

and classification in ground-based images, a particularly arduous task (Fabel et al., 2022). Clouds, being 

amorphous structures, lack clear boundaries and sizes that are challenging to identify and track. Many 

regions within different cloud types appear similar, requiring broader context for accurate classification, 

and clouds can fluidly transition from one type to another without distinct boundaries (Ye et al., 2022). 

This complexity has led many researchers to reduce cloud segmentation and classification to a binary 

"cloud/not-cloud" problem (Ye et al., 2022). Others have focused on estimating cloud impact on specific 

applications by grouping clouds into a few superclasses that are easier to distinguish (Fabel et al., 2022).  

In the context of CV, clouds can be segmented, and their individual pathways tracked and predicted. 

Various segmentation techniques have been employed to identify and classify clouds, primarily focusing 

on attributes such as shape, texture, color similarity, brightness, and contour continuity within an image 

(Juncklaus Martins et al., 2022a).  

 

In this context, semantic segmentation (SS) using deep learning (DL) techniques have been the most 

promising. However, there are situations where SS cloud segmentation can yield unusable results, as 

depicted in Figure 1, where several clouds have been both under- or over-segmented and misclassified. 

These errors in cloud segmentation and classification may arise from the inherent complexity of cloud 

formations, leading to a phenomenon called segment leakage (Wangenheim et al., 2007), variations in 

atmospheric conditions, or limitations in the algorithms being employed. Such results pose challenges 

for meteorological analysis and forecasting, underscoring the need for continual refinement and 

adaptation of the segmentation techniques employed. 
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Figure 1: Examples of unreliable results obtained from traditional DL-based SS cloud segmentation. Where each 

color represents a different class. 

 

2. Objectives 

 

In this work, our research focuses on a few key objectives aimed at advancing the state of the art of 

segmentation of cloud images captured by horizon-aimed cameras, specifically to: 

 

- Employ multiple segmentation models to evaluate their performance and applicability on our 

unique horizon cloud dataset. 

- Investigate the influence of different loss functions on the segmentation process, seeking 

insights into how they affect segmentation quality and characteristics. 

- Apply and develop innovative post-processing techniques to enhance the final segmentation 

result, working to refine the accuracy and robustness of the models. 

 

Through these objectives, we aim to make valuable contributions to the field of cloud image 

segmentation, enabling more precise and efficient analysis of atmospheric phenomena captured by 

horizon-oriented imaging systems. 
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3. Methodology 

 

3.1 Dataset 

 

In this work we used the open source Clouds-1500 dataset (Arrais, 2023), that is an extension of the 

Clouds-1000 dataset (Juncklaus Martins et al., 2022b, p. 100), comprising in 1500 sky images captured 

between March 2021 and January 2023 using ground-based cameras at the Federal University of Santa 

Catarina and the Photovoltaic Energy Laboratory in Brazil. The images were manually annotated by a 

team of computer scientists, meteorologists, and an experienced sky observer using the Supervisely 

platform. 

 

The dataset employs a practical cloud height-based classification system, categorizing clouds into four 

groups: Cirriforms, Cumuliforms, Stratiforms, and Stratocumuliforms, along with a category for 

background objects. This classification aims to enhance nowcasting in the solar energy sector by 

predicting solar radiation absorption by clouds covering solar energy facilities. To ensure dataset quality, 

a subset of images was inspected for annotation consistency. The dataset was then split into training 

and validation sets, and a semantic segmentation convolutional neural network was used to identify the 

100 lowest-scoring images, which were manually reviewed and corrected by a meteorologist. 

 

The images were captured using motionEye version 0.41 and Motion version 4.2.2, with a frame rate of 

1 per minute between 08:00 and 22:00 GMT. The captured images have a resolution of 2592 x 1944 

and are stored locally before being uploaded to Google Drive (Arrais, 2023). 

 

The dataset distribution, as presented in  

 

Table 1, reveals significant variations in the number of images and area percentage across different 

classes. The Object class consists of the largest number of images, totaling 1376, and covers 17.02% 

of the dataset's area. The Stratocumuliform class follows, with 1095 images and 35.64% of the dataset's 

area, marking the highest percentage coverage among cloud types. Stratiform is represented by 453 

images, accounting for 11.01% of the area, while Cirriform and Cumuliform are the least prevalent 

classes, with 382 and 251 images, respectively, and corresponding to 4.81% and 3.58% of the dataset's 

area. This distribution highlights the prominence of certain classes and provides insight into the diversity 

and characteristics of the dataset, especially considering the regional climatic conditions that influence 

the formation of specific cloud types. Given the humid climate of the region, Cumulonimbus clouds are 

rarely formed, typically occurring in dryer regions, and in consequence, few instances of this cloud type 

are found in our dataset. 

 

Table 1: Shows the distribution of classes in the clouds 1500 dataset. Where the object class represents pixels 

that do not belong to clouds and the area represents the number of pixels in a given class in relation to the total 

annotated. 

 

Class Type  Images (quantity) Area in dataset (%) 

Object  1376 17.02 

Stratocumuliform  1095 35.64 

Stratiform  453 11.01 

Cirriform  382 4.81 

Cumuliform  251 3.58 
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3.2 Semantic Segmentation Models and Loss Functions 

 

First, we needed to train and compare various semantic segmentation models to attain efficient 

segmentation, which is pivotal for the subsequent post-processing step. In our study, we selected two 

classic models, HRNet (Wang et al., 2020) and SegFormer (Zhu et al., 2021), which have demonstrated 

significant success across various semantic segmentation challenges, including benchmark datasets 

like Cityscapes. HRNet maintains high-resolution representations through the network without down-

sampling, thus allowing better localization and dense prediction. SegFormer, on the other hand, 

combines the strengths of transformers and convolutional layers to address the scale variation problem, 

making it particularly appealing for our specific task of segmenting clouds from the sky. In addition to the 

models, we also chose to experiment with a newer, lightweight, and efficient model named PP-LiteSeg 

(Luo et al., 2022). Despite its compact design, PP-LiteSeg has been shown to be capable of achieving 

performances on par with much larger models. Its architectural efficiency emanates from a unique 

integration of pyramid pooling and Lite modules, making it an attractive choice for applications 

demanding reduced computational resources. By comparing these three models, our aim was to discern 

whether the newer, more lightweight PP-LiteSeg could stand alongside or even surpass the established 

HRNet and SegFormer in the specific context of cloud segmentation, thereby leading to a choice that 

balances both accuracy and efficiency.  

 

For the semantic segmentation loss functions, we initially employed the cross-entropy loss, 

acknowledged for its effectiveness in classification tasks (Goodfellow et al., 2016). However, this alone 

could not deal with the class imbalance prevalent in our dataset. In this context, particularly when dealing 

with intricate patterns like segmenting clouds from the sky, employing a combination of Dice and Focal 

loss has proven to be remarkably effective. The Dice loss focuses on enhancing the spatial continuity 

and shape properties of the segmented regions, making it crucial for achieving a more realistic 

configuration of cloud formations (Milletari et al., 2016). Focal loss addresses the class imbalance 

problem by dynamically scaling the contribution of each instance to the loss based on its classification 

accuracy, thus emphasizing the learning from the under-represented class (Lin et al., 2017). Together, 

the combination of Dice and Focal loss harmonizes the requirements of maintaining spatial continuity 

with class balance, resulting in a more nuanced and accurate segmentation that would be difficult to 

achieve with either loss function alone. We also tested with a more recent type of loss, referred to in the 

literature as Semantic Connectivity-aware Loss (SCL) (Chu et al., 2021). This loss function is specifically 

designed to improve the quality of segmentation results by considering the connectivity perspective. 

While the paper focuses on portrait segmentation in the context of video conferencing, the principles 

behind this loss function could be applied to SS of clouds and sky. In the segmentation of cloud and sky, 

connectivity is a crucial aspect. Clouds often form complex, interconnected structures, and the sky itself 

is a continuous entity. Traditional loss functions might not adequately capture these connections, leading 

to fragmented or inconsistent segmentation. The SCL could address this issue by emphasizing the 

relationships between different regions of the cloud and sky. By ensuring that connected regions are 

segmented consistently, this loss function could lead to more accurate and coherent segmentation of 

cloud formations and sky areas.  

 

The neural networks were trained using a dataset consisting of 1500 images, which were divided into 

two subsets: 375 images for validation and 1125 images for testing. To ensure consistency and 

compatibility with the network architecture, all images were resized to a uniform resolution of 648x486 

pixels. During the training process, data augmentation techniques were employed to enhance the 

robustness and generalization capabilities of the models. These augmentation algorithms were applied 

dynamically, subjecting the images to various transformations. One such transformation was a vertical 

flip operation, which randomly flipped the images along the vertical axis.  

 

Additionally, the brightness, contrast, and saturation of each image were adjusted by a random value 

within the range of +15% to -15%. This augmentation strategy helped to simulate different lighting 

conditions and variations that the models might encounter in real-world scenarios. 
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The training of each network was conducted for a total of 15,000 iterations, with a batch size of 2. The 

loss function used during this phase was CrossEntropy. To monitor the progress and performance of 

the networks, validation was performed after every 500 iterations. This allowed for the identification of 

the best-performing model, which was then selected as the basis for further fine-tuning. 

 

The fine-tuning process was applied to the best model obtained from the initial training phase. This step 

aimed to optimize the model's performance by adapting it to specific loss functions. Two loss functions 

were considered for fine-tuning: Dice+Focal loss and Semantic Connectivity Loss. Each loss function 

was applied separately for 10,000 iterations, allowing the model to learn and adapt to the specific 

characteristics and objectives of each loss function. After the fine-tuning process, the best weights 

obtained from each loss function were retained and used as the foundation for our subsequent study. 

 

3.3 Post-Processing Methodology 

 

In our methodology for correcting cloud segmentations, we employed a post-processing technique that 

relies on previously segmented images. The process consists of two main steps: training and prediction, 

an overview can be seen on Error! Reference source not found.. During the training phase, we r

emoved the object class from both the ground truth and the prediction of an image. We then used 

OpenCV (Bradski, 2000) to extract all the connected components of the prediction. For each component, 

we extracted information regarding the number of pixels for each class, total area, height, and width. 

Using the predicted component mask within the ground truth mask, we identified the predominant class 

in the ground truth image. The extracted features were used as input for classic machine learning models 

such as random forest (Breiman, 2001) and XGBoost (Chen and Guestrin, 2016), with the target being 

the class extracted from the ground truth. This procedure was carried out for each component of every 

image in the dataset. During the prediction phase, we followed a similar process. We extracted the 

characteristics of the components of the prediction and employed the trained models to determine the 

predominant class for each component. Finally, all components were relabeled with their predicted class. 

This approach allowed us to refine cloud segmentations by training machine learning models with 

features derived from each image's components, resulting in a more accurate representation of the 

clouds. By leveraging regional information such as pixel counts, area, height, and width, the models 

could learn to correct segmentation errors and leakages that the initial semantic segmentation model 

may have produced. For comparative purposes, we also employed a simpler "voting" method. In this 

method, for each connected component, we counted the number of pixels associated with each class 

and then labeled the entire component with the majority class. Our post-processing methodology aimed 

to enhance the segmentation results by incorporating additional spatial and contextual information that 

the semantic segmentation models might have overlooked. By training models specifically on the 

connected components, we could capture more nuanced patterns and correct errors at a finer 

granularity. This approach has the potential to significantly improve the accuracy and consistency of 

cloud segmentation, especially in challenging scenarios where clouds exhibit complex structures and 

boundaries. 
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Figure 2: Presents an overview of the methodology applied. The methodology consists of using the image that 
has already been predicted and correcting it using information from each segmented cloud together with the 

predicted class. 

 

4. Results and Discussions 

 

Our first experiment aimed to evaluate the performance of three models – HRNet48, PP-LiteSeg, and 

SegFormerB3 – using three loss functions: Cross Entropy (CE), DiceFocal (DF), and Semantic 

Connectivity-Aware Loss (SCL). The models were assessed across six classes using the Dice coefficient 

as the evaluation metric.  

 

Table 2 presents the results of these experiments.  

 

SegFormerB3 consistently outperformed the other models across all loss functions and most classes, 

particularly in the 'Sky' and 'Cirriform' classes. These findings align with recent research highlighting the 
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effectiveness of transformer-based architectures in various computer vision tasks, including semantic 

segmentation (Dosovitskiy et al., 2020).  

 

Conversely, PP-LiteSeg underperformed, especially in the 'Stratiform' and 'Cirriform' classes, potentially 

due to its lightweight architecture, which may lack the capacity to capture complex patterns in certain 

classes despite offering computational efficiency benefits (Li et al., 2020).  

 

Comparing the effects of different loss functions revealed that the differences in Dice scores across the 

three loss functions for all models were marginal. The DiceFocal loss slightly enhanced the Dice scores 

for the 'Cumuliform' class in all models compared to the other loss functions, possibly due to its balanced 

approach that combines the advantages of Dice loss and Focal loss, providing more robust performance 

for difficult-to-segment classes (Lin et al., 2017; Milletari et al., 2016). However, these differences were 

relatively minor, suggesting that the choice of loss function may not have a major impact on the overall 

performance of these models. This observation aligns with previous research indicating that while the 

choice of loss function can influence model performance, it is often secondary to other factors such as 

model architecture and training regime (Rahman and Wang, 2016). 

 

Table 2: Comparison of dice coefficients for different cloud types across various model architectures and loss 

functions. Each entry in the table represents the average dice coefficient over the test dataset for a given cloud 

type, model, and loss function. 

 

Model+Loss Sky Object Cirriform Cumuliform Stratiform Stratocumuli 

hrnet48-ce 0.876 0.972 0.539 0.430 0.526 0.799 

hrnet48-df 0.875 0.975 0.579 0.455 0.528 0.803 

hrnet48-scl 0.876 0.976 0.585 0.452 0.498 0.793 

pplite-ce 0.878 0.976 0.488 0.490 0.420 0.768 

pplite-df 0.877 0.976 0.499 0.479 0.430 0.763 

pplite-scl 0.878 0.975 0.502 0.472 0.424 0.768 

segformerb3-
ce 0.897 0.977 0.619 0.552 0.490 0.816 

segformerb3-
df 0.897 0.979 0.643 0.520 0.466 0.793 

segformerb3-
scl 0.894 0.978 0.622 0.486 0.423 0.792 

 

Figure 3 demonstrates that SegFormerB3 provided more consistent performance, showing fewer 

leakage issues in the segmentation of these images, with HRNet following closely behind. On the other 

hand, PP-LiteSeg exhibited several segmentation leaks. This figure highlights a class with less than 5% 

representation within the dataset. By considering the results from both the images and the data in Table 

2, it can be inferred that PP-LiteSeg may not be well-suited for detecting classes with low representation 

in the dataset.  
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Figure 3: An example cirriform and cumuliform cloud image segmented by all networks with all loss functions. We 

can see that SegFormerB3 achieved a significantly better result than PP-LiteSeg in all cases and slightly 

outperformed HRNet. 

 

However, when examining images that appear more frequently in the dataset, such as the 

stratocumuliform clouds in Figure 4, PP-LiteSeg's results are significantly better compared to the 

previous figure. In this case, PP-LiteSeg even has fewer leaks than SegFormerB3. Moreover, by 

referring to Table 2. 

 

Table 2, it is evident that the differences in the predictions for this class are smaller across models. This 

implies that if the dataset is made more balanced, the performance gap between the segmentation 

models could be further reduced. It is important to note that while the Dice coefficient offers a valuable 

measure of model performance, it is not the sole factor to consider when assessing the effectiveness of 

a model. Other aspects such as computational efficiency, ease of implementation, and adaptability to 

different tasks should also be taken into account (Rousson et al., 2008). Due to its lightweight 

architecture, PP-LiteSeg was trained at least twice as fast, utilizing about 3GB of GPU VRAM. This can 

be beneficial if the objective is to deploy the model on embedded hardware for real-time prediction. 
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Figure 4: An example image with stratocumuliform clouds segmented by all networks with all loss functions. In this 

case, PP-LiteSeg and HRNet produced results with less leakage compared to SegFormerB3. 

 

4.1 Post-Processing Results 

 

Table 3: Comparison of dice coefficients for different cloud types before and after applying post-processing 

methods. Each entry in the table represents the average dice coefficient over the test dataset for a given cloud 

type, model, and post-processing method. 

 

 

Experiment Sky Object Cirriform Cumuliform Stratiform Stratocumuli 

pplite-scl 0.878 0.975 0.502 0.472 0.424 0.768 

pplite-rf 0.878 0.975 0.413 0.468 0.453 0.778 

pplite-vt 0.878 0.975 0.412 0.527 0.418 0.777 

pplite-xgb 0.878 0.975 0.458 0.452 0.447 0.786 

segformerb3-

CE 

0.897 0.977 0.578 0.552 0.49 0.812 

segformerb3-

rf 

0.897 0.977 0.542 0.556 0.475 0.801 

segformerb3-

xgb 

0.892 0.974 0.572 0.583 0.511 0.810 

segformerb3-

vt 

0.897 0.977 0.521 0.572 0.483 0.808 
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In our comparative analysis of post-processing methods, we selected two segmentation models based 

on their performance in prior experiments: PP-LiteSeg with SCL and SegFormerB3 with Cross-Entropy 

(CE) loss. The motivation behind this selection was to evaluate the extremes, choosing the model with 

the overall best metric (SegFormerB3-CE) and the one with the worst (PP-LiteSeg-SCL).  

 

Table 3 presents the results of applying various post-processing methods to the outputs of these models.  

 

During our evaluations, it became evident that SegFormerB3 with CE loss often outperformed PP-

LiteSeg with SCL, especially for the Cirriform cloud type. Applying the 'voting' leakage correction to 

SegFormerB3 did not drastically surpass the baseline in most categories, suggesting that simple 

majority-based corrections may not adequately address the complexities inherent in segmentation tasks. 

However, SegFormerB3 with this correction still outperformed PP-LiteSeg, implying inherent advantages 

of the SegFormerB3 model for specific cloud types.  

 

We further investigated the use of machine learning methods for fixing segment leakage issues, focusing 

on random forest and XGBoost. SegFormerB3, when coupled with XGBoost, demonstrated notable 

improvements for the Cumuliform and Stratiform categories, with Dice coefficients increasing from 0.552 

to 0.583 and from 0.490 to 0.511, respectively. This underscores the value of leveraging region-specific 

features in leakage correction. In contrast, the random forest method presented varied outcomes, 

excelling with Stratocumuli but falling behind with Cirriform clouds, emphasizing the importance of 

meticulous feature selection and optimization when applying machine learning corrections. (Martins et 

al., 2023) 

 

An interesting observation was that even when the post-processing methods improved the scores for 

some classes, they sometimes lowered the overall image classification score, especially for Cirriform 

clouds. This drop can be attributed to our algorithm's reliance on OpenCV's connectivity feature. In 

certain prediction scenarios, the network identifies clouds as interconnected, which is common with the 

Cirriform class since they appear frequently and often look fragmented in images. When one cloud is 

identified and it touches another, our algorithm ends up changing the classification of that large cluster 

of clouds into a single segmentation, whereas ideally, they should be multiple distinct segments. As a 

result, the algorithm labels them under a single class. We are actively exploring ways to address this 

issue, such as experimenting with erosion and dilation techniques to better differentiate cloud 

classifications.  

 

Comparing our main experiments, PP-LiteSeg-SCL and SegFormerB3-CE, with the leakage-corrected 

models highlights the importance of choosing the right model combination, loss function, and correction 

technique. Figure 5 shows that our algorithm enhances the visual consistency of image segmentation, 

which aids cloud ceiling observations. The steady improvements we observed with XGBoost 

demonstrate its effectiveness and provide valuable insights for future work on fixing segmentation 

leakage. 
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Figure 5: Comparison between ground truth, segformer B3 with CrossEntropy prediction and the result using our 
algorithm with xgboost 

 

Conclusions 

 

We evaluated the performance of SegFormerB3 with CE loss under three scenarios: 1) without any post-

processing, 2) with only voting-based correction, and 3) with XGBoost-based correction. The results 

showed that while voting-based correction provided some improvements, the XGBoost-based approach 

consistently outperformed the others, especially for the Cumuliform and Stratiform classes. This 

confirms that using machine learning models to learn from region-specific features is a more effective 

strategy for fixing segmentation leaks compared to simple majority voting. 

 

However, our current approach has limitations. The reliance on connected components can sometimes 

lead to over-grouping of fragmented clouds, as observed with the Cirriform class. This suggests that 

more advanced techniques for separating touching or overlapping clouds could be beneficial. 

Additionally, the computational overhead introduced by the post-processing steps needs to be carefully 

considered for real-time applications. While the improved accuracy is valuable, it comes at the cost of 

increased computation time. Future work could explore more efficient post-processing methods or ways 

to integrate the leakage correction into the main segmentation model itself. 
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Despite these challenges, our results demonstrate the potential of combining semantic segmentation 

with machine learning-based post-processing for improved cloud image segmentation. By leveraging 

the strengths of models like SegFormerB3 and XGBoost, we can obtain more accurate and consistent 

results, even for complex cloud scenes. This has important implications for downstream applications 

such as solar energy forecasting, where precise cloud segmentation is crucial for predicting irradiance 

levels and optimizing energy generation. 

 

Furthermore, the ability to segment and classify clouds with higher accuracy can contribute to climate 

research and weather forecasting. By providing more detailed and reliable data on cloud distributions 

and their evolution over time, our approach can help validate and improve climate models, leading to 

better predictions of weather patterns and long-term climate trends. 
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